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Abstract
This paper presents formulation of computationally efficient models of photoionization produced by
non-thermal gas discharges in air based on three-group Eddington and improved Eddington (SP3)
approximations to the radiative transfer equation, and on effective representation of the classic integral
model for photoionization in air developed by Zheleznyak et al (1982) by a set of three Helmholtz
differential equations. The reported formulations represent extensions of ideas advanced recently by
Ségur et al (2006) and Luque et al (2007), and allow fast and accurate solution of photoionization
problems at different air pressures for the range 0.1 < pO2R < 150 Torr cm, where pO2 is the partial
pressure of molecular oxygen in air in units of Torr (pO2 = 150 Torr at atmospheric pressure) and R in
cm is an effective geometrical size of the physical system of interest. The presented formulations can be
extended to other gases and gas mixtures subject to availability of related emission, absorption and
photoionization coefficients. The validity of the developed models is demonstrated by performing direct
comparisons of the results from these models and results obtained from the classic integral model.
Specific validation comparisons are presented for a set of artificial sources of photoionizing radiation
with different Gaussian dimensions, and for a realistic problem involving development of a
double-headed streamer at ground pressure. The reported results demonstrate the importance of
accurate definition of the boundary conditions for the photoionization production rate for the solution of
second order partial differential equations involved in the Eddington, SP3 and the Helmholtz
formulations. The specific algorithms derived from the classic photoionization model of Zheleznyak
et al (1982), allowing accurate calculations of boundary conditions for differential equations involved in
all three new models described in this paper, are presented. It is noted that the accurate formulation of
boundary conditions represents an important task needed for a successful extension of the proposed
formulations to two- and three-dimensional physical systems with obstacles of complex geometry (i.e.
electrodes, dust particles, aerosols, etc), which are opaque for the photoionizing UV photons.

1. Introduction

Plasma discharges at atmospheric pressure have received
renewed attention in recent years due to their ability to
enhance the reactivity of a variety of gas flows for applica-
tions ranging from surface treatment to flame stabilization
and ignition. In air at atmospheric pressure, discharges usu-
ally take the form of filamentary streamers. These discharges

are characterized by a high electron concentration in a nar-
row filament and produce high concentrations of chemically
active species that can effectively enhance the reactivity
to a level sufficient for many applications of interest (e.g.
van Veldhuizen 2000). The examples of related applications
include ozone production, pollution control, surface process-
ing (Raizer 1991, van Veldhuizen 2000 and references cited
therein), and triggering of combustion in spark ignition engines
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(Tardiveau et al 2001, Tardiveau and Marode 2003). An ex-
cellent recent review of various applications of streamers is
provided by Ebert et al (2006).

The concept of streamer discharges was introduced in
the 1930s to explain naturally occurring spark discharges
(Loeb and Meek 1940). Streamers are regarded as the
precursor of spark discharges. They can initiate spark
discharges in relatively short (several cm) gaps at near ground
pressures in air. In ground air pressure applications a
typical transverse scale of individual streamer filaments is
a fraction of a millimetre (e.g. Bastien and Marode 1979,
Pancheshnyi et al 2005, Briels et al 2005), and may be
substantially wider depending on the circuit and the peak
applied voltage characteristics of a particular experiment
(Briels et al 2006). Lightning is a natural phenomenon
directly related to streamer discharges. A streamer
zone consisting of many highly-branched streamers usually
precedes leader channels initiating lightning discharges in
large volumes at near ground pressure (Raizer 1991, p 364).

About two decades ago, large-scale electrical discharges
were discovered in the mesosphere and lower ionosphere
above large thunderstorms, which are now commonly referred
to as sprites (e.g. Franz et al 1990, Sentman et al 1995,
Stanley et al 1999, Neubert 2003, Lyons 2006). Recent
telescopic imaging of sprites at standard video rates
(i.e. with ∼16 ms time resolution) revealed an amazing
variety of generally vertical fine structure with transverse
spatial scales ranging from tens to a few hundred meters
(Gerken et al 2000, Gerken and Inan 2002, 2003, 2005). The
most recent continuous high-speed video recordings of
sprites at ∼10 000 frames per second further confirm
that filamentary structures are abundantly present in
sprite discharges (Cummer et al 2006, McHarg et al 2007,
Stenbaek-Nielsen et al 2007). It is interesting to note
that the filamentary structures observed in sprites are the
same phenomenon as streamer discharges at atmospheric
pressure only scaled by reduced air density at higher
altitudes (Pasko et al 1998, Liu and Pasko 2004, 2005, 2006,
Liu et al 2006). An overview of the physical mechanism and
molecular physics aspects of sprite discharges in comparison
with laboratory discharges can be found in Pasko (2007).

Various models have been developed to study
propagation of streamers (see Raizer 1991 p 352 and
Bazelyan and Raizer 1998 p 176). Well before numerical
modelling techniques were applied to this field of research,
two simple models of the streamer process had been proposed
to qualitatively study streamers: an isolated head model and
a model treating the streamer channel as ideally conducting.
The first one considers the head of a streamer as a charged
sphere. As it moves, it leaves behind a quasi-neutral ionized
channel. However, the conductivity of the channel is assumed
to be negligibly low and the head is not connected to the anode
(Raizer 1991, p 352). The second one assumes that the con-
ductivity of the streamer channel is infinite, and its surface is
equipotential. The charges induced by the external field are
distributed along the surface (Raizer 1991, p 356). There has
been no answer to the question of which model is valid until
recently. Numerical simulation results from a two-dimensional
streamer model based on a diffusion–drift approximation have
indicated that the streamer channel has finite conductivity

(Dhali and Williams 1987). Since then, the streamer model
proposed by Dhali and Williams (1987) has been improved
and is now widely used in the modeling of streamer prop-
agation for many purposes (e.g. Vitello et al 1994, Babaeva
and Naidis 1997, Kulikovsky 2000, Pancheshnyi et al 2001,
Arrayas et al 2002).

It is generally recognized that streamers are driven by
highly nonlinear space charge waves (e.g. Raizer 1991, p 327),
and develop in a self-consistent manner. Streamers are known
to have two polarities: positive (cathode-directed) and negative
(anode-directed), defined by the sign of the charge in their
heads. The positive streamer propagates against the direction
of the electron drift, while the negative one moves in the same
direction as the electron drift. The photoionization produced
by UV photons originating from a region of high electric field
in the streamer head is responsible for creation of seed electrons
in front of the head of a propagating streamer, and is believed
to play a critical role in the spatial advancement of streamers
of both polarities (e.g. Babaeva and Naidis 1997, Rocco et al
2002, Kulikovsky 2000, Pancheshnyi et al 2001, Luque et al
2007).

In a diffusion–drift or hydrodynamic-like approach to
streamer modelling, the motion of electrons, ions and excited
molecules is governed by continuity equations coupled to
Poisson’s equation (e.g. Dhali and Williams 1987). The pho-
toionization process is taken into account through a source
term which is added to the continuity equations of elec-
trons and ions. During early attempts of numerical simu-
lations of streamers, the photoionization term was ignored
and the pre-ionization needed for stable advancement of
streamers of both polarities was provided by introducing
a uniform neutral background ionization of the gas (e.g.
Dhali and Williams 1987, Vitello et al 1994). In the current
literature, the photoionization term is usually calculated using
integral models with coefficients based either on the classi-
cal experiments of Penney and Hummert 1970 and Teich 1967
(e.g. Wu and Kunhardt 1988, Kunhardt and Tzeng 1988,
Morrow and Lowke 1997), or on the description proposed by
Zheleznyak et al 1982 for air (e.g. Babaeva and Naidis 1997,
Kulikovsky 2000, Pancheshnyi et al 2001, Liu and Pasko
2004, 2006).

The accurate and efficient evaluation of the effects of
photoionization remains one of the most challenging tasks
in streamer modelling. For the integral approach men-
tioned above, the calculation of the photoionization source
term at a given point of the volume studied requires a
quadrature over the complete volume of the discharge.
Therefore, the calculation of the photoionization source
term in streamer discharges is computationally expen-
sive. To accelerate the simulation of streamers, different
approximations are proposed in the literature to reduce the
computation time spent on calculation of the photoioniza-
tion source term (Kulikovsky 2000, Pancheshnyi et al 2001,
Hallac et al 2003). Kulikovsky (2000) proposed to confine
the emitting volume of the photoionizing radiation to a
small cylinder around the main axis of the discharge and to
divide it into small rings. For a two-dimensional model-
ing of streamers assuming cylindrical symmetry, the effects
of an emitting ring at a point of interest can be effec-
tively characterized by their relative locations (described by
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a geometric factor in Kulikovsky (2000)). This geomet-
ric factor only needs to be calculated once before the sim-
ulation for a specific computational geometry and can be
repeatedly reused in the simulations. In Kulikovsky (2000)
and Hallac et al (2003) photoionization is calculated on a
coarse grid and interpolation is used to obtain needed values
on the main grid. Finally, in Pancheshnyi et al (2001) cal-
culations are carried out in a small area around the streamer
head. Pancheshnyi et al (2001) also compared the streamer
discharge characteristics obtained by using spatially uniform
background pre-ionization level with those obtained by the
integral model. They found that although it is possible to
obtain an agreement of some characteristics by varying the
pre-ionization level, the agreement cannot be reached for all
the characteristics at a given pre-ionization level. We note that
all the approximate models reviewed above reduce the compu-
tation time to a certain degree but the accuracy of these models
has not yet been rigorously evaluated and demonstrated in the
existing literature.

Recently, two different approaches to calculate the pho-
toionization term have been proposed to avoid the calculation
of the global quadrature over the simulation domain. The first
approach was tested a few years ago (Djermoune et al 1995a,
1995b) and improved recently (Ségur et al 2006). This
method is based on the direct numerical solution of an
improved Eddington approximation of the radiative transfer
equation. The second approach has been proposed recently by
Luque et al (2007). These authors proposed to approximate
the absorption function of the gas in order to transform the
integral expression of the photoionization term into a set of
Helmholtz differential equations.

In this paper, we discuss several models based on
the differential equation approach currently proposed in the
literature for the calculation of the photoionization term
(Ségur et al 2006, Luque et al 2007), and develop improved
models based on the same principles by more accurately
accounting for the spectral dependence of the photoionization.
The validity and range of applicability of the developed
models are demonstrated by performing direct comparisons
of the results from these models and results obtained from the
classic integral model of Zheleznyak et al (1982). Specific
validation comparisons are presented for a set of artificial
sources of photoionizing radiation with different Gaussian
dimensions and for a realistic problem involving development
of a double-headed streamer at ground pressure.

2. Model formulation

2.1. Classical integral model for photoionization in air

In the widely used model derived by Zheleznyak et al
(Zheleznyak et al 1982, Liu and Pasko 2004, Naidis 2006)
for photoionization in air, the photoionization rate at point of
observation �r due to source points emitting photoionizing UV
photons at �r ′ is

Sph(�r) =
∫ ∫ ∫

V ′

I (�r ′)g(R)

4πR2
dV ′, (1)

where R = |�r − �r ′|. In this model, to simplify calculations,
the production of photons is assumed to be proportional to the

Figure 1. (a) Elementary emitting volume (ring) for photoionization
calculations. (b) Schematic illustration of the inhomogeneous grid
for efficient photoionization calculations using the integral model.
(c) Illustration of an inhomogeneous grid system for acceleration of
photoionization calculations using the integral model.

ionization production rate Si, and then I (�r) is given by

I (�r) = ξ
nu(�r)
τu

= pq

p + pq
ξ
νu

νi
Si(�r), (2)

where ξ is the photoionization efficiency, nu(�r) is the density
of the radiative excited species u, the ratio pq/(p + pq) is
a quenching factor, τu is the lifetime of the excited state
u accounting for the effects of spontaneous emission and
quenching (i.e. τu = pq/(Au(p+pq)), where Au is the Einstein
coefficient), νu is the electron impact excitation frequency for
level u, and Si = νine, where ne is the electron number density
and νi is the ionization frequency. The function g(R) in (1) is
defined by

g(R)

pO2

= exp(−χminpO2R) − exp(−χmaxpO2R)

pO2R ln(χmax/χmin)
, (3)

where χmin = 0.035 Torr−1 cm−1, χmax = 2 Torr−1 cm−1

and where pO2 is the partial pressure of molecular oxygen
(=150 Torr at atmospheric pressure). We note that in
equation (3) we divided g(R) by pO2 to make the result
conveniently dependent on the product pO2R, which is an
important parameter for photoionization in N2–O2 mixtures
as shown by Zheleznyak et al (1982). The dependence of the
right-hand side of equation (3) on the pO2R product makes it
easily scalable to different pressures.

The above described model has typically been employed
in a cylindrical coordinate system to model the dynamics of
two-dimensional azimuthally symmetric streamers. Following
the approach proposed by Kulikovsky (2000), the emitting
volume in this kind of coordinate system (r, φ, z) is divided
into small rings centred at the symmetry axis (figure 1(a)), and
the photoionization rate at point of observation (r, z) due to all
source rings (rs, zs) in cm−3 s−1 is

Sph(r, z) =
∫

drs

∫
dzsI (rs, zs)Mph(r, rs, |z − zs|). (4)

In equation (4) the integration is performed over all source
regions with significant production of photoionizing radiation
and the function Mph is defined as

Mph(r, rs, |z − zs|) = rs

4π

∫ 2π

0

g[R(φs)]

R(φs)2
dφs, (5)
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where R(φs) = |�r − �r ′| = [r2
s + r2 + (z − zs)

2−
2rrs cos(φs)]

1
2 .

The geometric factor Mph depends on r, rs and |z − zs|,
and it is possible to calculate Mph once and store it as a
three-dimensional array, which can be repeatedly reused for
computation of Sph at each time step in the simulation. Even
with this simplification the integral model for photoionization
is computationally very expensive because a two-dimensional
integration (equation (4)) has to be carried out for each
observation point (r, z). To further improve the computation
efficiency, a straightforward technique of using a coarse grid
for photoionization calculation instead of the main grid can
be employed. A homogeneous coarse grid is utilized for this
purpose in Kulikovsky (2000) and Hallac et al (2003).

A more accurate and efficient grid system is an
inhomogeneous one with fine resolution around the streamer
head and coarse resolution in the region away from the head as
shown schematically in figure 1(b). In this approach every time
when the photoionization is calculated, a new grid is generated
with the origin at the streamer tip, where the electric field is
maximum. The photoionizing emission source is assumed to
be confined in the shaded region shown in figure 1(b). The
value of Sph at each point of the new grid is calculated using
equation (4) by accounting for the sources in the shaded region
only. A linear or exponential interpolation is used to obtain Sph

at the main grid points. The Mph required for integration (4)
still needs to be calculated only once and stored in a three-
dimensional array for a repeated use.

Figure 1(c) provides an example of practical implementa-
tion of the above discussed ideas. If the size of the simulation
domain is 0.5×0.125 cm2, a grid for the calculation of Mph can
be set up as shown in figure 1(c), where the effective diameter
of the shaded region shown in figure 1(b) is assumed to be
l = 0.2 cm. In the z direction the simulation domain is divided
into equal intervals with length l/2 = 0.1 cm. The grid size in
each of these intervals is constant, and increases exponentially
with the distance from the origin from one interval to the next.
If the grid size in a particular interval becomes greater than the
interval itself (l/2), then l/2 is used as the grid size instead,
as shown, for example for the interval from z = 0.4 to 0.5 cm
in figure 1(c). The grid in the r direction is generated follow-
ing the same procedure. Mph can then be calculated on this
grid using equation (5). The grid for the problem geometry
shown in figure 1(b) can be generated by following the same
ideas with the origin placed at the streamer tip and with the
l/2 intervals with reduced grid resolution extending in both
positive and negative z directions from the shaded region. The
calculation of the contribution to Sph(r, z) due to a source ring
at (rs, zs) is significantly accelerated by a simple call of the
corresponding pre-calculated element of the three-dimensional
matrix Mph (r, rs, |z − zs|). Finally, the contributions from all
the rings constituting the shaded source shown in figure 1(b)
are summed up to obtain the total Sph(r, z).

The integral approach with variable size grids based on the
Zheleznyak et al (1982) model outlined above is used for the
streamer calculations reported in section 3.2 of this paper. It
should be noted that for a double-headed streamer reported in
section 3.2, there are two grid systems generated with the origin
of each grid system positioned at the tip of the corresponding
streamer head. However, the same pre-calculated Mph matrix
is used for both heads.

2.2. Two and three-exponential Helmholtz models for
photoionization in air

Luque et al (2007) have recently proposed a novel approach
allowing to effectively replace the calculation of integral (1)
of the classic photoionization model with a solution of a set of
Helmholtz differential equations, which can be very efficiently
solved using well-developed techniques available for solution
of the elliptic partial differential equations. In terms of the
notation adopted in this paper the approach proposed by
Luque et al (2007) involves fitting of the g(R)/R ratio in (1)
with a sum of exponential functions leading to a set of integrals,
each of which can effectively be interpreted as an integral
solution of a separate Helmholtz differential equation. After
this equivalent representation is established the problem can be
solved by solving the set of Helmholtz differential equations,
instead of direct evaluation of integrals. However, the two-
exponential fit provided in Luque et al (2007) is applied to low
pressure experimental data of Penney and Hummert (1970)
effectively corresponding to the function g(R), rather than to
g(R)/R required for the correct solution of the problem. In this
section we present the correct solution of this problem using
two and three-exponential fits. In section 3.1 we demonstrate
that the two-exponential fit is generally not sufficient and
the three-exponential fit is needed for obtaining the accurate
solution of the problem for a full range of pO2R values in which
the Zheleznyak et al (1982) photoionization model remains
valid.

We note that the Zheleznyak et al (1982) photoion-
ization model, discussed in the previous section, is
formulated using experimental data obtained at low pres-
sure (Penney and Hummert 1970, Teich 1967) and agrees
well with the results of more recent experiments at atmo-
spheric pressure (Naidis 2006 and references cited therein).
Therefore, in contrast to Luque et al (2007) in our deriva-
tion below we do not employ the low pressure data of
Penney and Hummert (1970), but rather formulate the two and
three-exponential Helmholtz models using the g(R) function
(3) appearing in the classic integral model for photoionization
in air (Zheleznyak et al 1982).

The function Sph(�r) given by (1) can be represented in
the form

Sph(�r) =
∑

j

S
j

ph(�r) (6)

with terms

S
j

ph(�r) =
∫ ∫ ∫

V ′

I (�r ′)Ajp
2
O2

e−λj pO2 R

4πR
dV ′ (7)

satisfying the Helmholtz differential equations

∇2S
j

ph(�r) − (λjpO2)
2S

j

ph(�r) = −Ajp
2
O2

I (�r). (8)

Having compared equations (1) and (7) it can be easily verified
that

g(R)

pO2

= (pO2R)
∑

j

Aj e−λj pO2 R. (9)

The solution of the problem requires fitting of the function
g(R)/pO2 by series of exponents multiplied by (pO2R). After
the fitting, the photoionization problem can be solved by
solving differential equations (8) and performing summation
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Figure 2. Solid line: The g(R)/pO2 function given by equation (3)
from the model of Zheleznyak et al (1982). Dashed line:
two-exponential fit of the form specified by equation (9), performed
for the range 1 < pO2R < 60 Torr cm and with the parameters of
table 1. Dot-dashed line: three-exponential fit with the parameters of
table 2 performed for the range 1 < pO2R < 150 Torr cm.

Table 1. Parameters of the two-exponential fit of g(R)/pO2/(pO2R)
as a function pO2R.

j Aj (cm−2 Torr−2) λj (cm−1 Torr−1)

1 0.0021 0.0974
2 0.1775 0.5877

(6). In practice, it appears to be easier to fit the function
g(R)/pO2/(pO2R) with a sum of exponents

∑
j Aj e−λj pO2 R

and then multiply the result by (pO2R) to obtain the desired
representation of g(R)/pO2 given by (9).

The function g(R)/pO2 is shown in figure 2 by the solid
line and a two-exponential fit performed by MATLAB function
fminsearch (based on the Nelder–Mead simplex direct search
method) is shown by the dashed line. The two-exponential fit
was performed for the range 1 < pO2R < 60 Torr cm, which
directly corresponds to the pO2R range shown in figure 3 of
Zheleznyak et al (1982). The two-exponential fit parameters
are shown in table 1. We emphasize that the fit shown in figure 2
by the dashed line is a product of (pO2R) and

∑
j Aj e−λj pO2 R

as required for solution of the problem and represented by
the right-hand side in equation (9). It is also noted that it is
very difficult to fit the g(R)/pO2 function with two exponents
multiplied by pO2R and the fit given by parameters in table 1
and in figure 2 becomes invalid for pO2R < 1 Torr cm and
pO2R > 60 Torr cm. The implications of this are discussed in
section 3.1.

Djakov et al (1998) have applied a three-exponential fit
in the context of the Zheleznyak et al (1982) photoionization
model to obtain a fast recursive algorithm for solution of
the photoionization problem in a quasi-two-dimensional (the
1.5D or ‘disk’ based) streamer model. Although the fit
proposed in Djakov et al (1998) is not directly applicable in
the context of the Helmholtz equations based photoionization
model discussed in this section, we note that the employment
of three-exponential fits represents a natural and logical step to
remove the above discussed limitations of the two-exponential
model for the range 1 < pO2R < 60 Torr cm.

Table 2. Parameters of the three-exponential fit of
g(R)/pO2/(pO2R) as a function pO2R.

j Aj (cm−2 Torr−2) λj (cm−1 Torr−1)

1 1.986 × 10−4 0.0553
2 0.0051 0.1460
3 0.4886 0.89

As part of this work we also performed a three-exponential
fit of g(R)/pO2 using three exponents multiplied by (pO2R).
The related fit is shown in figure 2 by the dot-dashed line.
The parameters of the three-exponential fit are summarized
in table 2. The three-exponential fit is valid in the range of
pO2R from 1 to 150 Torr cm. We note that this range translates
into 1/150 = 0.0067 to 1 cm at ground pressure. The fit
for pO2R > 1 Torr cm is generally improved in comparison
with the two-exponential case, but it is very difficult to fit this
function even with three exponents at pO2R < 1 Torr cm. We
note that the upper limit of validity of the developed three-
exponential fit (pO2R = 150 Torr cm) exceeds the pO2R �
100 Torr cm (i.e. pR � 500 Torr cm, where p is air pressure)
validity threshold of the Zheleznyak et al (1982) model for
photoionization in air, as discussed recently in Naidis (2006).

The accurate numerical solution of Helmholtz equa-
tions (8) requires knowledge about values of S

j

ph(�r) func-
tions at the boundaries of the simulation domain. In
Luque et al (2007) these values are assumed to be zero. In
section 3.1 we demonstrate that the definition of the bound-
ary conditions for different components S

j

ph(�r) represents an
important part of an accurate solution of the photoionization
problem. A practical solution of this problem, which is ex-
tensively demonstrated in section 3.1, involves definition of
the boundary conditions for S

j

ph(�r) component with the small-
est λj (i.e. the longest photoionization range) using the classic
integral model of Zheleznyak et al (1982), and assumption of
zero boundary conditions for the rest of the S

j

ph(�r) components.
For both two and three-exponential models presented in this
section the smallest λj are associated with the first terms in
the corresponding series (i.e. with the j = 1 term), as can be
directly seen from tables 1 and 2. It is expected that this ap-
proach may lead to inaccurate results for situations when the
photoionization source is positioned very close to the bound-
ary (i.e. for a streamer head approaching an electrode or a
dust particle (Babaeva et al 2006)). The enhancement of the
electric field due to the conducting surface (i.e. image) effects
in this kind of simulation geometry may result in a relatively
small contribution of the photoionization rate in comparison
with the electron-ion pair production rate due to the direct
electron impact ionization. Nevertheless, this type of simula-
tion scenarios should be carefully tested with the integral pho-
toionization model (Zheleznyak et al 1982) before two and
three-exponential Helmholtz models and the Eddington and
SP3 models discussed in the following section, which also rely
on the above discussed boundary conditions, can be reliably
applied.

2.3. Three-group Eddington and SP3 approximations for
photoionization in air

In Ségur et al (2006), the photoionization source term Sph(�r)
is calculated using direct numerical solutions of the first
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(we also refer to it as Eddington approximation in this paper)
and the third order (we also refer to it as SP3 in this paper
following Ségur et al (2006)) Eddington approximations of
the radiative transfer equation. Ségur et al (2006) introduce
a simple monochromatic approach (we also refer to it as
one-group method in this paper following Ségur et al (2006))
and derive the physical parameters required for applying this
method to calculating Sph(�r) for non-thermal gas discharges
in air at atmospheric pressure by making the model results as
consistent as possible with the classical Zheleznyak model.

In order to achieve a better agreement with the Zheleznyak
model for the Eddington and SP3 approximations, we
propose to consider j = 1, Ng effective monochromatic
radiative transfer equations. For each frequency, the effective
monochromatic radiative transfer equation can be written as
(Ségur et al 2006):

�� · �∇	j(�r, ��) + λjpO2	j(�r, ��) = nu(�r)
4πcτu

, (10)

where the time dependence of the equation is dropped for
convenience in this paper, λjpO2 is the absorption coefficient
and only one excited state u is considered in order to simplify
notations. It is important to mention that all monochromatic
equations for j = 1, Ng have the same source term but different
absorption coefficients. Equation (10) can be simply integrated
to derive 	0,j (�r), the isotropic part of the photon distribution
function 	j(�r, ��) as

	0,j (�r) =
∫ ∫ ∫

V ′

nu(�r ′)
cτu

exp(−λjpO2R)

4πR2
dV ′. (11)

Then we assume that the isotropic part of the total distribution
function 	0(�r) can be written as

	0(�r) =
∑

j

αj	0,j (�r), (12)

where αj are constants. This approach is similar to the
Gaussian-type quadratures generally used in the correlated-
k method (Taine and Soufiani 1999). As already mentioned
in Ségur et al (2006), to calculate the photoionization source
term it is only necessary to know 	0(�r), the isotropic part of
the distribution function. Then, using equations (11) and (12),
the photoionization source term can be written as

Sph(�r) =
∑

j

Aj ξpO2

∫ ∫ ∫
V ′

nu(�r ′)
τu

exp(−λjpO2R)

4πR2
dV ′

=
∑

j

Sph,j (�r) (13)

where AjξpO2 are coefficients, which are defined below, with
the photoionization efficiency ξ introduced in equation (2).
To use this approach in air, the photoionization source term
given by equation (13) has to be compared with the Zheleznyak
integral expression (1). Both equations are identical if

g(R)

pO2

=
∑

j

Aj e−λj pO2 R, (14)

where Aj and λj are the unknowns. To obtain their values,
we follow the idea in section 2.2 to fit the function g(R)/pO2

Table 3. Parameters of the three-exponential fit of g(R)/pO2 as a
function pO2R

j Aj (cm−1 Torr−1) λj (cm−1 Torr−1)

1 0.0067 0.0447
2 0.0346 0.1121
3 0.3059 0.5994
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Figure 3. Solid line: The g(R)/pO2 function given by equation (3)
from the model of Zheleznyak et al (1982). Dashed line:
one-exponential fit given in Ségur et al (2006). Dot-dashed line:
three-exponential fit of the form specified by equation (14),
performed for the range 0.1 < pO2R < 150 Torr cm, and with the
parameters of table 3.

by a three-exponential fit (i.e. Ng = 3). The corresponding
parameters Aj and λj are given in table 3. In the following,
this approach is called the three-group method.

To avoid any possible confusion we emphasize the
difference between the equation (14) and the equation (9) of
the Helmholtz model. The Helmholtz model employs series of
exponents multiplied by (pO2R), while equation (14) provides
direct fit by exponents without multiplication by (pO2R). We
also bring to the attention of the readers the related difference
in units between Aj coefficients shown in tables 1 and 2 for
the Helmholtz model (cm−2 Torr−2) and those corresponding
to equation (14) and shown in table 3 (cm−1 Torr−1).

Figure 3 shows the original function g(R)/pO2 , the
three-exponential fit (14) derived in this section and the
one-exponential fit proposed in Ségur et al (2006). The three-
exponential fit was performed for the range 0.1 < pO2R <

150 Torr cm. It appears that the three-exponential fit allows
to have an excellent agreement with the function g(R)/pO2 ,
which is much better than the one-exponential fit, in particular
for large pO2R values. It is interesting to note that in the pO2R

range 0.1 < pO2R < 150 Torr cm the fit obtained using a
three-group method (figure 3) is generally more accurate than
the one obtained using a three-exponential Helmholtz model
(figure 2).

The above analysis indicates that in order to calculate
the photoionization source term Sph(�r), the set of radiative
transfer equations (10) has to be solved. Different methods
can be used. In this work we extend to the three-
group approach the Eddington and SP3 methods used in
Ségur et al (2006) for a one-group approach. For j = 1, Ng ,
the Eddington approximation of (10) to derive 	0,j is given by

661



A Bourdon et al

Ségur et al (2006):

[∇2 − 3(λjpO2)
2]	ED,0,j (�r) = −3λjpO2

nu(�r)
cτu

, (15)

where 	ED,0,j (�r) represents the first order Eddington
approximation of 	0,j (�r). As discussed in Ségur et al (2006),
equation (15) is an elliptic equation, which has a structure
very similar to Poisson’s equation. Therefore, both Poisson’s
equation and the Eddington approximation can be solved with
the same numerical routine.

Ségur et al (2006) also demonstrate that a third order
approximation of the radiative transfer equation is more
accurate than the Eddington approximation to calculate the
photoionization term when the absorption coefficient of the
gas is small and the gradient of the source term is large. For
j=1, Ng , the SP3 approximation of 	0,j is denoted as 	SP3,0,j

and is given by

	SP3,0,j (�r) = γ2φ1,j − γ1φ2,j

γ2 − γ1
, (16)

where

γn = 5
7 [1 + (−1)n3

√
6
5 ]. (17)

The functions φ1,j and φ2,j are defined by

∇2φ1,j (�r) − (λjpO2)
2

κ2
1

φ1,j (�r) = −λjpO2

κ2
1

nu(�r)
cτu

, (18)

∇2φ2,j (�r) − (λjpO2)
2

κ2
2

φ2,j (�r) = −λjpO2

κ2
2

nu(�r)
cτu

, (19)

where κ2
1 = 3

7 − 2
7

√
6
5 and κ2

2 = 3
7 + 2

7

√
6
5 . It is important to note

that unfortunately, there are some misprints in equations (46)
and (47) in Ségur et al (2006) and these equations should be
replaced by (18) and (19).

Equations (18) and (19) again have the same structure as
Poisson’s equation and can be solved by the same numerical
methods.

We note that since equation (15) of the Eddington model
and equations (18) and (19) of the SP3 model are Helmholtz
equations of the same structure as equation (8), it is possible to
derive related fits to the g(R)/pO2 function of the type specified
by equation (9) of the Helmholtz model (see appendix).
As demonstrated in the appendix establishment of these
mathematical relationships is useful for general evaluation of
the performance of the Eddington and SP3 models.

After obtaining the solution for 	ED,0,j or 	SP3,0,j , the
photoionization source term can be calculated using

Sph(�r) =
∑

j

Aj ξpO2c	0,j (�r) (20)

by replacing 	0,j with 	ED,0,j or 	SP3,0,j .
The formulation of the above Eddington approximations

requires separate evaluations of ξ in equation (20), and
nu(�r)/τu in equation (15) for the first order approximation,
or in equations (18) and (19) for the third one. For the
Zheleznyak and Helmholtz models, the product ξnu(�r)/τu

is computed using equation (2) to give the photoionization
radiation source utilizing the known term ξ(νu/νi) given by

Zheleznyak et al (1982). To effectively use the same term
in the Eddington approximations, we can slightly change the
above formulation by multiplying both sides of equation (15)
or equations (18) and (19) by a constant ξ . For example, the
following equation is obtained for the first order Eddington
approximation:

[∇2 − 3(λjpO2)
2][ξ	ED,0,j (�r)] = −3λjpO2ξ

nu(�r)
cτu

, (21)

where we could define 	∗
ED,0,j (�r) = ξ	ED,0,j (�r). This

equation is solved for 	∗
ED,0,j (�r) and, finally, we have

Sph(�r) =
∑

j

AjpO2c	
∗
ED,0,j (�r). (22)

By using this formulation, the factor ξ(nu(�r, t)/τu) in
the source term of equation (21) can be directly evaluated
by pq/(p + pq)(ξ(νu/νi))νine as used by the Zheleznyak and
Helmholtz models (see equation (2)).

The same idea can be applied to equations (18) and
(19) of the SP3 model. In this way, it is also demonstrated
that we could use different combinations of ξ and νu/νi

as long as their product is consistent with that given by
Zheleznyak et al (1982).

Similarly to the Helmholtz model discussed in section 2.2,
the boundary conditions also play an important role in
accurate evaluation of the Sph term using the three-group
method discussed in this section. For the three-group
models, boundary conditions can be introduced using the same
approach as used for the Helmholtz model. For the three-group
Eddington model, the boundary condition is set on the 	∗

ED,0,1
function according to equation (22):

	∗
ED,0,1(�r) = Sph(�r)

pO2A1c
, (23)

where Sph(�r) is calculated using the Zheleznyak integral
model. We note that following the discussion in section 2.2
we define here boundary conditions for the 	∗

ED,0,j component
with j = 1, corresponding to the smallest λj value (the
longest photoionization range) as apparent from table 3. Zero
boundary conditions are assumed for the remaining 	∗

ED,0,j

components corresponding to j = 2 and 3. This approach
is subject to the same limitations as discussed at the end of
section 2.2.

For the three-group SP3 model, the same boundary
condition is set on the functions defined as φ∗

1,1(�r) = ξφ1,1(�r)
and φ∗

2,1(�r) = ξφ2,1(�r) according to equations (20) and (16):

φ∗
1,1(�r) = φ∗

2,1(�r) = Sph(�r)
pO2A1c

. (24)

For the first order Eddington model, we have also
used the classical boundary conditions derived by Marshak
(Pomraning 1973, p 55) for various configurations. For
example, for the case of a boundary surface with no reflection
or emission (i.e. the boundary surface is transparent for the
radiative flux emitted in the medium), the value of 	∗

ED,0,j at
the boundary is given by

�∇	∗
ED,0,j (�r) · �nS = − 3

2λjpO2	
∗
ED,0,j (�r), (25)

where �nS is the unit outward boundary surface normal.
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It is interesting to note that equations (21) and (25) form a
consistent set of closed equations where the unknowns are the
	∗

ED,0,j (�r) functions. Furthermore, boundary conditions given
by equation (25) are very simple to implement and very fast to
calculate. One of our objectives in this work is to demonstrate
the influence of the boundary conditions on the calculations of
the photoionization source term. In sections 3.1 and 3.2 we
use the same type of boundary conditions for the Helmholtz
and Eddington models based on the accurate definition of the
j = 1 term from the integral Zheleznyak model. Figure 8 in
section 3.1 is the only exception. In figure 8 results obtained
with equations (23) and (25) are compared. The optimization
of the calculation of boundary conditions will be the subject
of a forthcoming paper.

To conclude the discussion in this section we note that
to avoid the Eddington or SP3 approximations, the radiative
transfer equation can be solved directly using, for example,
the SN method (Modest 2003, pp 498–530). Although, the
cost of this method is in principle higher than that of the
Eddington approximation, it is important to note that, as
scattering during collisions is ignored in our physical model,
no iterations in the SN method are required, unlike in the
Eddington or the improved Eddington approximations. Thus,
the SN method can be competitive with respect to the improved
Eddington approximation if, for example, the number of
angular directions is limited. This also will be the subject
of a future work.

2.4. Streamer equations

In section 3.2 of this paper the three-exponential Helmholtz and
the three-group Eddington and SP3 differential photoionization
models formulated in the previous subsections are employed
for solution of a realistic double-headed streamer problem. In
this section we provide an overview of related equations.

The most common and effective model to study the
dynamics of streamers is based on the following convection–
diffusion equations for electrons and ions coupled with
Poisson’s equation (e.g. Kulikovsky 1997):

∂ne

∂t
+ �∇·ne �ve − �∇ · (De · �∇ne) = Sph + S+

e − S−
e , (26)

∂np

∂t
= Sph + S+

p − S−
p , (27)

∂nn

∂t
= S+

n − S−
n , (28)

∇2V = −qe

ε0
(np − nn − ne), (29)

where subscripts ‘e’, ‘p’ and ‘n’ refer to electrons, positive
and negative ions, respectively, ni is the number density of
species i, V is the potential, �ve = −µe �E ( �E being the

electric field) is the drift velocity of electrons, De and µe

are the diffusion tensor and the absolute value of mobility
of electrons, respectively, qe is the absolute value of electron
charge and ε0 is permittivity of free space. On timescales of
interest for studies presented in this paper, ions are assumed
to be motionless. The S+ and S− terms stand for the rates
of production and loss of charged particles. The Sph term is
the previously defined rate of electron–ion pair production due
to photoionization in a gas volume. In this study the S+

e and

S+
p production rates have the meaning of the ionization rate

due to the electron impact ionization of air molecules, which
is denoted as Si and is discussed in the subsequent sections
of this paper in comparison with the photoionization rate Sph.
As already discussed in section 2.1 the Si rate is defined in a
standard fashion as Si = neνi where νi = α|ve| is the ionization
frequency and α is the ionization coefficient. This and other
coefficients of the model are assumed to be functions of the
local reduced electric field E/N , where E is the electric field
magnitude and N is the air neutral density. For test studies
presented in this paper all transport parameters and reaction
rates in air are taken from Morrow and Lowke (1997). In this
paper axisymmetric streamers are studied and thus cylindrical
coordinates introduced in section 2.1 are used.

We employ two sets of numerical techniques for solving
the streamer model equations:

(i) The charged species transport equations are solved using
a flux-corrected transport (FCT) method (Ségur et al
2006 and references therein). The 3rd order QUICKEST
scheme is used as the high order scheme and an upwind
scheme for the low order scheme. The flux limiter derived
by Zalesak (1979) is adopted for this FCT method. The
finite difference form of Poisson’s equation is solved
using the D03EBF module of the NAG Fortran library
(http://www.nag.co.uk).

(ii) The charged species transport equations are solved
using a modified Scharfetter–Gummel (SG) algorithm
(Kulikovsky 1995), and the finite difference form
of Poisson’s equation is solved by the successive
overrelaxation (SOR) method (see Liu and Pasko 2004
and references cited therein).

We follow the approach discussed in Vitello et al (1994)
to define the time step for model execution. The time
scales of relevance for selection of the time step, which
would provide model stability and accuracy, are the Courant
δtc, effective ionization δtI and dielectric relaxation δtD time
scales, the explicit expressions for which can be found in
Vitello et al (1994) and which are not repeated here for the
sake of brevity. The model time step is calculated as δt =
min(Acδtc, AIδtI, ADδtD) with Ac = 0.5, AI = 0.05 and
AD = 0.5. In practical streamer calculations the time step is
almost always defined by the minimum value of the ionization
time scale corresponding to the maximum field and maximum
ionization frequency νimax in the streamer head (δtI = 1/νimax).
We note that in our modelling we adopt a small AI value, which
is a factor of two less than that used in Vitello et al (1994).

The boundary conditions for the potential required for
the solution of Poisson’s equation by both techniques outlined
above are obtained using integral solutions of Poisson’s equa-
tion, which account for the known charge distribution inside of
the simulation domain (Liu and Pasko 2004). Specifically, we
employ the algorithm presented in Babaeva and Naidis (1996)
and Liu and Pasko (2004, 2006) to modify boundary condi-
tions for the potential to represent dynamics of double-headed
streamers without effects of the electrode image charges. The
applied technique allows to use a relatively small simulation
domain in transverse (i.e. radial) direction to obtain an accu-
rate solution for the electric potential corresponding to free
(i.e. not affected by boundaries) dynamics of streamers in ex-
ternally applied uniform electric field.
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The calculation of the boundary conditions in streamer
simulations can be significantly accelerated since only a small
number of grids inside of the simulation domain (usually
around streamer body and streamer head(s)) possess charge
density values significantly contributing to the potential values
at the boundary. In practical calculations the simulation
domain is scanned to find the maximum magnitude of the
charge density value |ρmax|, and it has been verified by
separate tests that accounting only for grids with charge
density magnitudes, which exceed 0.1% of this value (i.e.
|ρ| > 0.001|ρmax|) leads to fast, accurate and robust evaluation
of boundary conditions for potential, allowing effective use of
simulation domains with very small size in the radial direction.
Further improvements in terms of execution speed can be
achieved due to a relatively smooth spatial variation of the
potential at the boundaries. The potential can be evaluated
at a selected set of points and interpolation can be used to
obtain the values at all grid points constituting the boundary.
Due to a very small time step used in streamer modelling
(usually defined by the ionization time scale associated with the
large electric field in the streamer head as already mentioned
above) it is also possible, especially for preliminary test runs,
to evaluate boundary conditions only once during several steps
of the model execution. However, for all the streamer results
presented in section 3.2 the update of potential boundary
conditions has been performed at every time step for maximum
accuracy of results.

For photoionization calculations in the streamer model we
employ techniques discussed in sections 2.1–2.3 of this paper.
Specifically, for this study we have implemented the three-
group Eddington and SP3, the three-exponential Helmholtz
and the classical integral models. The quenching pressure is
assumed to be pq = 30 Torr, and the ratio ξνu/νi, appearing
in (2), is assumed to depend on the reduced electric field as
specified in Liu and Pasko (2004). The finite difference forms
of the Eddington, SP3 and Helmholtz photoionization model
equations are solved using the same module of the NAG Fortran
library used for the solution of Poisson’s equation. These three
models are implemented within the context of the first set of
numerical techniques described above (i.e. the FCT based).
Within the context of the second set of numerical techniques
(i.e. the SG based), we implemented the classical integral
and the Helmholtz models. The finite difference equations of
the Helmholtz photoionization model are solved by the SOR
method for this case. The modeling results obtained by using
different numerical techniques to solve the Helmholtz model
equations are very similar and we will not differentiate them
in the following sections of this paper.

It is verified by practical tests that very accurate results
for the photoionization production rate can be obtained even if
the photoionization is calculated once during every ten steps
of the execution of the streamer model. This approach is
justified due to the very small time step used in the streamer
modeling. Additionally, for photoionization calculations the
Sph term is usually negligible in the immediate vicinity of the
streamer head due to the domination of the ionization term Si,
and electrons created by the photoionization well ahead of the
streamer head go through a relatively long (in comparison with
the model time step) evolution and avalanche multiplication
before they affect the dynamics of the streamer head.

3. Results and discussion

3.1. Gaussian photoionization source

In this section, a simple model source of photoionizing
radiation is used to compare the two and three-exponential
Helmholtz, the three-group Eddington and SP3 models
introduced in previous sections 2.2 and 2.3 with the integral
model proposed by Zheleznyak et al (1982) reviewed in
section 2.1. We calculate the photoionization production rate
Sph in a two-dimensional axisymmetric computational domain
of length Ld and radius Rd for a Gaussian source centered on
the symmetry axis. The Gaussian ionization production rate
Si is defined by

Si(rs, zs) = νi(rs, zs)ne(rs, zs)

= Si0 exp(−(zs − z0)
2/σ 2 − r2

s /σ 2), (30)

where z0 is the axial position of the source term, σ is the
parameter controlling effective spatial width of the source, and
Si0 = 1.53 × 1025 cm−3 s−1. We note that the particular Si0

value is chosen to be consistent with similar study presented
in Ségur et al (2006) and has no implications for test results
and related conclusions presented in this section. Assuming
pq/(p +pq) = 0.038 (i.e. ground pressure) and ξνu/νi = 0.06
as in Ségur et al (2006) and using (2) we can write

I (rs, zs) = I0 exp(−(zs − z0)
2/σ 2 − r2

s /σ 2), (31)

where I0 = Si0ξ(νu/νi)pq/(p + pq) = 3.5 × 1022 cm−3 s−1

as in Ségur et al (2006).
The finite difference forms of the differential equations

involved in the Helmholtz, Eddington and SP3 models are
solved using the module D03EBF of the NAG Fortran library
(http://www.nag.co.uk). The numerical calculation of (4) was
carried out using the standard Gaussian quadratures. All
calculations were carried out with a uniform grid in both
directions and with nz = nr = 251, where nz and nr are the
number of cells along the longitudinal and radial directions,
respectively.

To demonstrate the importance of different ranges of
pO2R in the solution of the photoionization problems we
have performed calculations for simulation domain sizes (i.e.
Ld × Rd) 0.02 × 0.02 cm2, 0.2 × 0.2 cm2 and 2 × 2 cm2, at
ground pressure (pO2 = 150 Torr). We have also used the
respective values of source sizes σ = 0.001, 0.01 and 0.1 cm.
It is assumed that the source is positioned in the centre of
the simulation domain at z0 = 0.01 cm, 0.1 cm and 1 cm,
respectively. It is noted that σ = 0.001 cm is generally smaller
than the dimension of streamer head at ground pressure after
it has just been born from an avalanche. The σ = 0.01 cm
is comparable to the size of the streamer head. The streamer
head can reach dimension comparable to and much greater than
σ = 0.1 cm in large applied electric field, when the streamer
expands quickly (e.g. Briels et al 2006, Liu and Pasko 2004).
Therefore, all source sizes σ studied in this subsection can be
attributed to practical stages of propagation of real streamers.

We note that the artificial source of photoionizing radiation
formulated for studies in this section is spherically symmetric
and is expected to produce identical distributions of the
photoionization production rate Sph in both the radial and the
axial directions with respect to the center of the simulation
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Figure 4. Axial ((a) and (c)) and radial ((b) and (d)) profiles of the photoionization source term Sph for the case of domain dimension
0.2 × 0.2 cm2 and σ = 0.01 cm. Dashed line: results obtained with integral model of Zheleznyak et al (1982). Solid line: the
photoionization source term Sph = S1

ph + S2
ph calculated using the two-exponential Helmholtz model with zero boundary conditions ((a) and

(b)), and with corrected boundary conditions ((c) and (d)). Dot–dashed line: the S1
ph component. Dotted line: the S2

ph component.

domain. Therefore for the chosen domain sizes with Ld = Rd,
the distance from the center to the radial boundary is two
times longer than to the axial boundary. This aspect is
very useful for demonstration of effects of boundaries and
boundary conditions on obtained solutions as well as for direct
comparison of performance of the models on different spatial
scales.

Figures 4(a) and (b) show the axial and radial profiles
of the photoionization source term Sph calculated by the
Zheleznyak integral model and the Helmholtz differential
model based on the two-exponential fit, for the domain
dimension 0.2 × 0.2 cm2. The two components S1

ph and
S2

ph of the two-exponential Helmholtz model are also shown.
The solutions of the Helmholtz equations are obtained
using zero boundary conditions. We note that the two-
exponential Helmholtz profiles deviate significantly from the
Zheleznyak solution, especially near the boundaries. The
importance of the boundaries in the context of the differential
equation based photoionization models has not been discussed
in Ségur et al (2006) and Luque et al (2007).

As already mentioned in section 2.2, the Zheleznyak
integral model can be used to improve the solution of the
Helmholtz model. Using (4), the boundary condition is defined
for theS1

ph component (i.e. for the one with the smallestλj ). For
the other component S2

ph, zero boundary conditions are used.
Figures 4(c) and (d) show axial and radial profiles for the two-

exponential model with thus corrected boundary conditions.
The solutions are obviously improved.

The effects of the boundary conditions are also very
similar to those presented in figure 4 for the Eddington and
SP3 models (related results are not shown here for the sake of
brevity). Therefore, in the remainder of this section and in the
following section 3.2 all Helmholtz, Eddington and SP3 model
results are obtained using the corrected boundary conditions.
Figures 8 and 13 represent two exceptions. Figure 8 shows
the influence of the choice of boundary conditions for the
Eddington approach, and figure 13 explicitly demonstrates
the effects of boundary conditions in the context of practical
streamer simulations.

Figures 5(a) and (b) compare the two and three-
exponential Helmholtz model solutions, for the domain
dimension 0.2 × 0.2 cm2. The ionization term Si (30) is
also included for reference, as for streamer simulations,
photoionization is important only in regions where Si < Sph.
The results obtained with the three-exponential fit appear
to match better with the Zheleznyak integral solution. In
particular, the solutions near the center of the simulation
domain are significantly improved. This directly relates to
a better three-exponential fit at small pO2R values as can be
seen in figure 2.

Figures 5(c) and (d) compare the Zheleznyak model with
results obtained using the 3-group Eddington approximation
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Figure 5. Axial ((a), (c) and (e)) and radial ((b), (d) and (f )) profiles of the ionization source term Si and the photoionization source term
Sph, for the case of domain dimension 0.2 × 0.2 cm2 and σ = 0.01 cm. Dashed line: results obtained with integral model of
Zheleznyak et al (1982). (a) and (b) dot-dashed line: Sph using the two-exponential Helmholtz model, Solid line: Sph using
three-exponential Helmholtz model. (c) and (d) dot-dashed line: Sph using 3-group Eddington approximation, solid line: Sph using 3-group
SP3. (e) and (f ) solid line: Sph using 3-group SP3 approximation, dot-dashed line: Sph using 3-exponential Helmholtz model.

and the 3-group SP3 model, for the same domain dimension
0.2 × 0.2 cm2. The results shown in these two figures
demonstrate that the 3-group Eddington approximation and
the 3-group SP3 model give very similar results in the region
where Sph > Si, and these two solutions also appear to be
in good agreement with the Zheleznyak integral model. At
atmospheric pressure (pO2 = 150 Torr), the three absorption
coefficients of the three-group Eddington and SP3 models
given in table 3 are λ1pO2 = 6 cm−1, λ2pO2 = 16 cm−1

and λ3pO2 = 89 cm−1. It is interesting to note that even if
the Eddington and SP3 are in principle only very well suited

to situations in which photon absorption is sufficiently high
(Ségur et al 2006), figure 5 shows that these approximations
can be used to calculate accurately the photoionization source
term using a three-group approach for streamer propagation.

Finally, in figures 5(e) and (f ), we compare the 3-group
SP3 and the 3-exponential Helmholtz model with the
Zheleznyak model. The SP3 model appears to be slightly more
accurate in the region where Sph > Si.

We note that the direct application to the streamer
modelling of the Zheleznyak integral model given by
equation (1), without optimizations specified in section 2.1, is
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Figure 6. Same caption as figure 5 only for domain dimension 2 × 2 cm2 and σ = 0.1 cm.

prohibitively computationally expensive. In particular, results
obtained in figure 5 using the non-optimized Zheleznyak
model generally required a factor of 1000 longer computational
times than those obtained with the Eddington and Helmholtz
models.

Figure 6 presents the same information as figure 5, only
for the domain dimension 2 × 2 cm2 with σ = 0.1 cm.

Figures 6(a) and (b) show the axial and radial profiles
of the photoionization source term Sph calculated by the
Zheleznyak model in comparison with the Helmholtz solutions
obtained using the two and three-exponential fits. As in
figure 5, the ionization term Si is also shown for reference.
The results obtained with the three-exponential fit appear to
match better with the Zheleznyak integral solution in the region

where Sph > Si and, in particular, close to the boundaries. The
two-exponential Helmholtz model fails to provide an accurate
solution in this case. This result directly relates to a poor
two-exponential fit at large pO2R > 60 Torr cm values (i.e.
R > 0.5 cm at ground pressure considered here), as can be seen
in figure 2. The better performance of the three-exponential
Helmholtz model directly relates to a better three-exponential
fit at large pO2R values (i.e. R > 0.5 cm at ground pressure),
as can also be seen in figure 2.

Figures 6(c) and (d) compare the 3-group Eddington
approximation and the 3-group SP3 with the Zheleznyak model
for the same domain dimension 2 × 2 cm2. We note that
the use of the SP3 allows to improve the agreement with the
Zheleznyak model, in particular, close to the boundaries.
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Figure 7. Same caption as figure 5 only for domain dimension 0.02 × 0.02 cm2 and σ = 0.001 cm.

Finally, figures 6(e) and (f ) compare the 3-group SP3

and the 3-exponential Helmholtz model with the Zheleznyak
model. In this case, both models give very similar results in
the axial direction and are very close to the Zheleznyak model.
In the radial direction, the results obtained with the SP3 model
appear to be slightly more accurate than the three-exponential
Helmholtz model in the region where Sph > Si.

As we emphasized at the beginning of this section, for the
domain with Ld = Rd the effective distance from the source
at the center of the simulation domain to the boundary is two
times longer in the radial direction than in the axial direction
(i.e. 2 cm versus 1 cm in figure 6). Therefore the radial
distances exceeding 1 cm allow one to observe the behavior
of different models in the region beyond applicability of the

model fits obtained for the range 1 < pO2R < 150 Torr cm
for the three-exponential Helmholtz model (figure 2) and for
0.1 < pO2R < 150 Torr cm for the three-group Eddington
and SP3 models (figure 3) (i.e. for R < 1 cm at atmospheric
pressure pO2 = 150 Torr). All models shown in figures 6(e)
and (f ) show outstanding performance in both axial and radial
directions at distances <1 cm from the source, as expected
from the range of validity of related fits in figures 2 and 3. In the
same vein we note that a special caution should be used when
models described in this work are applied in large simulation
domains for which pO2R product exceeds 150 Torr cm.

Figure 7 is presented in the same format as figures 5
and 6, only for the domain dimension 0.02 × 0.02 cm2 with
σ = 0.001 cm.
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Figure 8. Axial ((a), (c) and (e)) and radial ((b), (d) and (f )) profiles of the ionization source term Si and the photoionization source term
Sph. Dashed line: Sph using the integral model of Zheleznyak et al (1982). Solid line: Sph using 3-group Eddington approximation and
boundary conditions given by equation (25), dot-dashed line: Sph using 3-group Eddington model with boundary conditions given by
equation (23), (a) and (b) for the case of domain dimension 0.02 × 0.02 cm2 and σ = 0.001 cm; (c) and (d) for the case of domain
dimension 0.2 × 0.2 cm2 and σ = 0.01 cm, (e) and (f ) for the case of domain dimension 2 × 2 cm2 and σ = 0.1 cm.

Figures 7(a) and (b) show the axial and radial profiles
of the photoionization source term Sph calculated by the
Zheleznyak model and the Helmholtz solution using two and
three-exponential fits. As expected from the fits shown in
figure 2 for small distances, the results obtained with both
solutions are poor, but we note that in the region of interest for
streamer simulations (where Sph > Si), the three-exponential
Helmhotz model appears to be in relatively good agreement
with the Zheleznyak model.

In figures 7(c) and (d), we compare the three-group
Eddington approximation and the three-group SP3 with the
Zheleznyak model. We note that the use of the SP3 allows

to improve the agreement with the Zheleznyak model, in
particular, in the region where Sph > Si.

In figures 7(e) and (f ), we compare the three-group
SP3 and the three-exponential Helmholtz model with the
Zheleznyak model. In this case, in the region where Sph > Si

both models give very similar results in the axial direction and
are very close to the Zheleznyak model. In the radial direction,
the results obtained with the SP3 model appear to be slightly
more accurate than the three-exponential Helmholtz model in
the region where Sph > Si.

Finally, figure 8 demonstrates comparative performance
of the boundary conditions specified by equations (23) or (25)
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for the three-group Eddington approximation. Figures 8(a)
and (b) are for the domain dimension 0.02 × 0.02 cm2 with
σ = 0.001 cm, and 8(c) and (d) are for the domain dimension
0.2 × 0.2 cm2 with σ = 0.01 cm. In both cases, the use of
equation (25) slightly overestimates the exact value of the
photoionization source term at the boundaries in the axial
direction, but the agreement is good in the radial direction.
Figures 8(e) and (f ) are for the domain dimension 2 × 2 cm2

with σ = 0.1 cm. In this case, the use of equation (25)
underestimates the exact value of the photoionization source
term at the boundaries in the axial and radial directions.

We reiterate again the point stated at the end of section 2.3
that equations (21) and (25) form a coherent set of closed
equations for the Eddington approach. Furthermore, boundary
conditions given by equation (25) are very simple to implement
and very fast to calculate.

In conclusion, all the results obtained in this section
show that the use of non-zero boundary conditions improves
significantly the agreement between the Zheleznyak integral
and the approximate differential models. In this work, we
have used mainly boundary conditions specified on the basis
of the classic integral model of Zheleznyak. In this section we
demonstrated that for approximate radiative transfer equations
a coherent set of approximate boundary conditions derived
from radiation transfer theory can be successfully used. The
optimization of the calculation of boundary conditions will
be the subject of a future work. We have also shown
that the use of a three-exponential fit either with the SP3

model or with the Helmholtz model allows to obtain a good
agreement with the Zheleznyak integral model, and that the
two-exponential fit is generally not sufficient to reproduce the
Zheleznyak model accurately for the full range of validity of
this model (i.e. up to pO2R � 100 Torr cm, or R � 0.7 cm
at ground pressure (Naidis 2006)). It is interesting to note
also that although the Eddington and SP3 are in principle
only very well suited to situations in which photon absorption
is sufficiently high, these approximations can be used to
calculate accurately the photoionization source term using a
three-group approach for streamer propagation. The models
derived in this paper are only slightly more complicated
than the one-group model proposed in Ségur et al (2006), but
remain simple to implement in streamer codes. Results of the
practical application of these models to a streamer problem
are presented in the following section 3.2, in which we also
discuss computational expenses involved in different types of
photoionization models.

3.2. Double-headed streamers in air

In this section, we report and compare modelling results on a
double-headed streamer developing in air at ground pressure
(760 Torr) obtained with different photoionization models
discussed in previous sections of this paper. The simulation
domain is the same as in Liu and Pasko (2004, figure 4(a)). Two
remote electrodes with a certain potential difference establish
a uniform Laplacian field E0 = 4.8 × 106 V m−1. All results
presented in this paper are obtained assuming air neutral
density N0 = 2.688 × 1025 m−3, and therefore E0/N0 =
178.6 Td (1 Td = 10−17 V cm2). Under the influence of this
applied field, a double-headed streamer is launched by placing

a neutral plasma cloud in the simulation domain. The initial
plasma cloud has a Gaussian distribution in space:

ne(r, z)|t=0 = np(r, z)|t=0

= n0 exp

[
−

(
r

σr

)2

−
(

z − z0

σz

)2
]

. (32)

The center of the Gaussian distribution is located in the middle
of the simulation domain, at z0 = 0.7 cm, and it is assumed
that σr = σz = 0.02 cm and n0 = 1020 m−3. The size of the
computational domain is 1.4 × 0.125 cm2. The computational
grid is uniform in both radial and axial directions. The total
number of cells is nz × nr = 1681 × 151, where nz and nr

represent number of cells in the axial and radial directions,
respectively. As part of preparatory work for the model
studies presented in this paper we have conducted several
test runs with 2400 × 100 grid points with a refined mesh
in the radial direction and uniform mesh in the axial direction.
Results appeared to be identical to those obtained with the
1681 × 151 uniform mesh, which therefore was adopted for
all runs presented in this paper.

Before the incorporation of different photoionization
models, we tested the performance of the two sets of numerical
techniques described in section 2.4 (i.e. the FCT and SG
based) using a test-case for which photoionization effects
are not included and the pre-ionization level is only supplied
by a uniform neutral background plasma with initial density
of 1014 m−3. This approach is similar to the one applied
in a classic paper of Dhali and Williams (1987). Only very
small differences are observed in results obtained with the two
models for the modelled double-headed streamer. Specifically,
by the time moment 3.5 ns from the beginning of the model
execution the differences between the peak electron number
densities and peak electric fields between two model streamers
do not exceed 7.8% and 2.6%, respectively. It is noted
that these differences do not exceed those arising from
known limitations of the local field approximation in streamer
modelling (Naidis 1997, Li et al 2007). These test results
are not shown in this paper for the sake of brevity, but
essentially the same agreement between the two numerical
techniques can be observed by comparing results obtained with
the three-exponential Helmholtz photoionization model shown
in figures 9 and 10(a).

Figure 9 compares the electron number density
distribution on the symmetry axis of the computational domain
calculated using the three-group Eddington and SP3, and the
three-exponential Helmholtz models for the photoionization
term. The results are shown for the moments of time from t = 0
to t = 3.5 ns, with a timestep of 0.5 ns. We note that there is
an excellent agreement between the results obtained with these
three models for both streamer heads. Small differences are
observed in the region well ahead of the streamer head, and
the differences increase as the streamer advances.

Figure 10 compares the profiles of electron density and
the magnitude of the electric field on the symmetry axis
of the computational domain calculated using the three-
exponential Helmholtz model for the photoionization term
and the classical integral model of Zheleznyak et al (1982)
optimized as described in section 2.1. The results are also
shown for the moments of time from t = 0 to t = 3.5 ns,
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Figure 9. Electron density profiles on the symmetry axis of the
computational domain at various moments of time calculated using
different photoionization models. The results are obtained by the
FCT based numerical technique described in section 2.4. Dashed
line: three-exponential Helmholtz model; Solid line: three-group
Eddington; Dot-dashed line: three-group SP3. Results are shown for
the moments of time from t = 0 to t = 3.5 ns, with a
timestep of 0.5 ns.
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Figure 10. Profiles of streamer characteristics along the symmetry
axis of the computational domain at various moments of time
calculated using different photoionization models. The results are
obtained by the SG based numerical technique described in
section 2.4. (a) Electron density. (b) Electric field. Dashed line:
optimized integral Zheleznyak model; Solid line: three-exponential
Helmholtz model. Results are shown for the moments of time from
t = 0 to t = 3.5 ns, with a timestep of 0.5 ns.

with a timestep of 0.5 ns. An excellent agreement between the
results is observed for the double-headed streamer. For the
electron density, only small differences exist in the region well
ahead of the streamer head. For electric field, the difference is
almost impossible to notice before 3.0 ns and extremely small
deviations between results obtained with the two models are
present at 3.0 and 3.5 ns. The differences for both electron
density and electric field increase as the streamer advances.

Figure 11 shows a cross-sectional view of the distributions
of the electron density, electric field and photoionization
production rate at t = 3.5 ns obtained using the three-
exponential Helmholtz model. This cross-sectional view

represents an example of two-dimensional views of simulation
results obtained by using different differential equation based
photoionization models. As expected, the photoionization
source term is maximized in the head regions, but we also
note that this term is significant in the body of the streamer in
the region between the two heads. As expected on physical
grounds and as apparent from figure 11(c) the photoionization
production rate appears to exhibit a high degree of spherical
symmetry around both streamer heads. The direct inspection
of figure 11(c) also emphasizes the importance of accurate
definition of boundary conditions for Sph, as simple zero
boundary conditions on radial boundaries would clearly
produce an unphysical distortion of the photoionization
production rate.

Figure 12(a) shows the Sph term and the relative
distributions of the three components of the three-exponential
Helmholtz model on the symmetry axis of the simulation
domain at t = 3.0 ns. The regions dominated by each
component can clearly be identified in the figure. The S1

ph
term, associated with the smallest λ1 and therefore with
the longest photoionization range (which from the general
structure of equation (7) is expected to approximately follow
1/λ1 dependence) dominates in the region ahead of the
streamer head. The S2

ph term ranks after S1
ph demonstrating

intermediate λ2 value and the photoionization range (see
table 2), while S3

ph term is clearly confined and dominates
inside of the streamer head (this term has the largest λ3 as
can be seen from table 2 and therefore is associated with the
shortest photoionization range).

Figure 12(b) compares the photoionization source
term calculated by the three-exponential Helmholtz model
described in section 2.2 and the optimized integral Zheleznyak
model described in section 2.1. Results from both models
are in very good agreement in the regions of and ahead of
both positive (left) and negative (right) streamer heads. A
significant difference is observed in the region between the
streamer heads. We recall that the optimized integral solution
described in section 2.1 does not include contributions from
the emission sources outside of the square around each of
the streamer heads (see figure 1(b), and the discussion at
the end of section 2.1), but the Helmholtz solution does.
A relatively strong ionization appears in the streamer body
(figure 13(b)) implying strong photon emission source in this
region. The Helmholtz model automatically accounts for this
source by the right-hand side term in equation (8). However,
the photoionization source in the streamer body does not affect
the dynamics of the streamer, because the electron impact
ionization rate Si is much stronger than the photoionization
rate Sph in the streamer body, as illustrated in figure 13(b).

As a follow-up from the discussion presented in
the previous paragraph it is worthwhile to reiterate that
photoionization plays a role in the streamer dynamics
only when it dominates over ionization in certain regions.
Figures 13(a) and (b) compare the photoionization source
term Sph calculated with the three-group SP3 model and the
ionization source term Si at two different moments of time:
t = 0.2 ns and t = 3 ns. At t = 0.2 ns, we note that
in the streamer head regions the ionization term Si exceeds
the photoionization term Sph. In front of the streamer heads,
the photoionization source term dominates. Very rapidly as
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Figure 11. A cross-sectional view of distributions of (a) electron density, (b) electric field and (c) photoionization source term at t = 3.5 ns
calculated using the three-exponential Helmholtz model.
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Figure 12. Photoionization source term Sph at t = 3 ns along the
symmetry axis of the computational domain. (a) Sph and the three
components S1

ph, S2
ph and S3

ph of the three-exponential Helmholtz
model. (b) Sph calculated using the three-exponential Helmholtz and
the optimized integral Zheleznyak models.

the streamer starts to propagate, the ionization term becomes
stronger than the photoionization term everywhere in the
simulation domain as shown, for example, by figure 13(b)
at t = 3 ns. These results support the conclusion made in
Kulikovsky (2000) ‘In high field the streamer behaves as a
flash lamp; it produces very intensive radiation when it arises
and then the initial photoelectrons provide its propagation.’
This conclusion is only valid for streamers propagating in
a high applied electric field E exceeding the conventional
breakdown threshold field Ek defined by the equality of the
electron impact ionization and electron dissociative attachment
coefficients in air (Raizer 1991, p 135). It is expected that the
photoionization term would dominate over the ionization term
in most of the region ahead of a streamer propagating in a low
ambient field (E < Ek) in a point-to-plane discharge geometry
where the dissociative and three-body attachment of electrons
is dominant over the ionization. The related results in the
context of the photoionization models described in this paper
will be reported in a separate dedicated publication.

Figures 13(a) and (b) also show the photoionization source
term Sph and the ionization term calculated for a case when zero
boundary conditions for the photoionization term Sph in SP3

model are used. In this case, we note that in the regions of
the streamer heads the ionization term dominates over pho-
toionization term; however, the photoionization term is at all
moments of time stronger than the ionization term in the re-
gion ahead of both streamer heads. This observation reiterates
that the boundary conditions for the photoionization calcula-
tion have a significant impact on the ionization term as pho-
toionization provides the initial photoelectrons for ionization
in high fields. Figures 13(a) and (b) indicate that in the regions
ahead of streamer heads, both photoionization and ionization
terms significantly deviate from those calculated using correct
boundary conditions for Sph. We emphasize that even with
these noticeable differences in ionization and photoionization,
the characteristics (e.g. distributions of the electron density
and electric field, speed and radius) of the model streamer are
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Figure 13. Photoionization source term Sph and ionization source
term Si along the symmetry axis of the computational domain at
(a) t = 0.2 ns and (b) t = 3 ns. Solid line: the three-group SP3 with
corrected boundary conditions. Dot-dashed line: ionization term
with corrected boundary conditions for photoionization. Dashed
line: the three-group SP3 with zero boundary conditions. Dotted
line: ionization term with zero boundary conditions for
photoionization.

still very close to the case with correct boundary conditions
for photoionization. Therefore, for this high field test-case to
speed up calculation, it is possible to use zero boundary con-
ditions for photoionization calculation if the goals of the study
do not include detailed studies of properties of the ionization
or photoionization in the region ahead of the streamer heads.
However, as we already mentioned above, for other situations
such as the propagation of streamers in low fields in point-
to-plane discharge geometry when two and three-body attach-
ment dominates over ionization in the most of the simulation
domain ahead of the streamer (i.e. Babaeva and Naidis 1997,
Liu and Pasko 2006 and references therein), it is essential to
correctly take into account boundary conditions for calcula-
tion of the photoionization term, and related studies will be
presented in a separate follow up paper.

It is instructive to compare the total execution times
of the models based on differential equation approach in
comparison with the optimized integral Zheleznyak model.
We have noticed that the simulation time of the three-
group Eddington approach with boundary conditions given by
equation (23) is similar to the one of the three-exponential
Helmholtz model with corrected boundary conditions given

in section 2.2, whereas the simulation time of the three-
group SP3 with boundary conditions given by equation (24)
is slightly longer. As an example of such comparisons
we conducted accurate measurements of computation times
involved in two model cases shown in figure 10. We reiterate
that both models are executed on the same hardware (2 GHz
Power Mac G5 running Mac OS X 10.4) with identical
grids and algorithms to define time steps and boundary
conditions. As already noted in section 2.4 the photoionization
production rate has been updated after every ten steps of
the model execution and the boundary conditions for the
electric potential have been updated every time step. The
measured total execution time of the code based on the
optimized implementation of the Zheleznyak et al (1982)
integral photoionization model as described in section 2.1
was 53 h and 20 min. The measured execution time of the
code based on the three-exponential Helmholtz model with
corrected boundary conditions described in section 2.2 was
63 h and 14 min. The time profiling indicates that about 80%
of the model execution time is spent in both cases on updates
of the boundary conditions for the potential and the solution
of the Poisson equation for the electric field. It is noted that
even if the photoionization production rate is updated at every
time step, the execution times of both models will be of the
same order.

The difference in the computation time presented above
may seem in favor to the integral photoionization model;
however, it is important to point out that the optimization
(introduction of moving meshes with variable cell sizes
and employment of effective windowing and interpolation
techniques) of the integral model is rather involved and
complex, and requires a separate adaptation effort to extend
it to every new configuration studied. At the same time,
the implementation of the photoionization models based
on differential equation approach is straightforward and
simple. Furthermore, in the optimized integral approach the
photoionization source term is calculated accurately only close
to the streamer heads. For example, in the double-headed test-
case, we have shown that due to the optimization, in the region
between the streamer heads, the photoionization source term is
not calculated accurately using the integral model. Conversely
with the differential approaches the photoionization term is
calculated accurately in the whole computation domain.

4. Conclusions

In this paper, we discuss and improve several models
currently proposed in the literature for the calculation of
the photoionization produced by plasma discharges in air.
The reported improvements are achieved by more accurate
accounting for the spectral dependence of the photoionization
process. In particular, the classical Zheleznyak integral model
and three photoionization models in a differential form are
presented. These approaches can be directly applied for
photoionization calculations in model studies of the dynamics
of streamers in air.

An efficient implementation of the classical Zheleznyak
integral model is presented for streamer modeling in air. The
three differential approaches developed are a three-exponential
Helmholtz model, a three-group Eddington and a three-group
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improved Eddington (SP3) models. The Helmholtz model
is based on an approximation of the absorption function
of the gas in order to transform the integral expression of
the photoionization term in a set of Helmholtz differential
equations. The Eddington and SP3 methods are based on the
direct numerical solution of an approximation of the radiative
transfer equation. It is demonstrated that the solutions involved
in all the three differential models require accurate definition
of the boundary conditions.

We have conducted two test studies of the performance
of the newly proposed photoionization models: Gaussian
emission source and a double-headed streamer developing in
a strong uniform electric field (greater than the conventional
breakdown field).

Our studies using the Gaussian source have demonstrated
that the use of a three-exponential fit to the absorption function
in air either with the Eddington, SP3 or the Helmholtz model
allows one to obtain good agreement with the Zheleznyak
integral model, and that single or two-exponential fits do
not allow the Zheleznyak model to be reproduced accurately.
We have also demonstrated that a proper setting of boundary
conditions significantly improves the agreement between the
Zheleznyak model and the three differential models.

Our model studies of the double-headed streamer have
demonstrated that with the three-group Eddington, the three-
group SP3, or the three-exponential Helmholtz models, the
calculated streamers are very similar to the one calculated
using the classical Zheleznyak integral model. It is particularly
interesting to note that the Eddington and SP3 models, which
are in principle only very well suited to situations in which
photon absorption is sufficiently high, can be used to calculate
very accurately the photoionization source term using a three-
group approach even if some effective absorption coefficients
in the model are small.

The comparison of the photoionization and ionization
source terms for the studied case of strong uniform applied field
indicates that photoionization only plays a role during the very
early stage of the development of the streamer. These results
indicate the need to conduct further studies for a streamer
propagating in a weak electric field (less than the conventional
breakdown field) in order to complete tests of the performance
of the newly proposed photoionization models under the full
range of applied field conditions. The related results will be
presented in a separate dedicated paper.

In this work, we have also compared streamer modelling
results obtained using different numerical techniques to solve
the transport equations for charged particles: the Zalesak
flux-corrected transport (FCT) method and the modified
Scharfetter–Gummel (SG) algorithm. We have also utilized
different techniques for solution of Poisson’s field equation:
the D03EBF module of the NAG Fortran library and the SOR
method, which are used in conjunction with the FCT and SG
transport algorithms, respectively. The results of solution
of the same double-headed streamer problem obtained by
the FCT method based on a 3rd order QUICKEST scheme
and an upwind scheme, and by the modified SG algorithm
demonstrate that both numerical techniques lead to accurate
and consistent solutions of the streamer problem.

The results of accurate measurement of computational
time involved in calculations using different photoionization

models for the considered model streamer are presented, which
indicate, in particular, that the computational times of the
differential and optimized integral models for the model case
considered in this study are of the same order. However, it
is important to mention that a significant acceleration of the
integral models in simple cases of single or double-headed
streamers studied with these models to date has been possible
due to introduction of moving meshes with variable cell sizes
and employment of effective windowing and interpolation
techniques. The details of related algorithms are presented
in this paper. It is important to stress that the optimization
of the integral model is rather complex and requires to
be separately adapted to every new configuration studied.
Conversely, the implementation of the photoionization models
based on the differential equation approach is straightforward
and simple. Furthermore, in the optimized integral approach
the photoionization source term is calculated accurately only
close to the streamer heads. For example, in the double-headed
test-case, we have shown that in the optimized integral model
the photoionization source term is not calculated accurately
in the region between the streamer heads (see discussion of
figure 12(b) in section 3.2). Conversely with the differential
approaches the photoionization term is calculated accurately
in the whole computation domain.

Although the different photoionization models are only
used to model streamer discharges in air in this study, we
expect that the models can be applied to evaluating the
photoionization effects in other forms of plasma discharges
in air. In addition, the extension of the photoionization models
to other gases is possible if the information on all emission,
absorption and photoionization coefficients of the studied gas
is available.

The presented results document the range of applicability
of the newly developed photoionization models and emphasize
that the accurate formulation of boundary conditions represents
an important task needed for a successful extension of
the proposed formulations to two- and three-dimensional
physical systems with obstacles of complex geometry (i.e.
electrodes, dust particles, aerosols, etc), which are opaque
for the photoionizing UV photons. We have demonstrated
that accurate definition of the boundary conditions can be
effectively introduced with the Zheleznyak integral model.
For the Eddington model we have also demonstrated the
performance of a set of boundary conditions consistent with
the first order approximation of the radiative transfer equation.
These boundary conditions are simple, fast to compute and
easy to adapt to any configuration. The possibility of
formulating such a consistent set of equations and boundary
conditions based on radiative transfer physics is a significant
advantage of the Eddington and SP3 models in comparison
with the Helmholtz model. In a future work similar boundary
conditions for the SP3 model will be derived and optimized.

We conclude by emphasizing that the actual advantage of
differential models advanced in this paper in comparison with
the integral model lies in the simplicity of implementation
of this type of models, and in the unquestionable simplicity
of extension of these models to complex two- and three-
dimensional simulation geometries, involving, for example,
propagation of multiple streamer heads in the same simulation
domain, and the presence of obstacles on the streamer path (i.e.
electrodes, dust particles, aerosols, etc).
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Appendix: mathematical relationships between the
Eddington, SP3 and Helmholtz models

The three-group Eddington and SP3 models presented in the
main body of this paper have been derived on physical grounds
from the general radiative transfer equation. These physics
based models have certain advantages in comparison with
the Helmholtz model, allowing in particular to formulate
a consistent and computationally efficient set of equations
and boundary conditions based on a radiative transfer theory
(see section 2.3). It is useful, however, to bring to the
attention of the readers that equation (15) of the Eddington
model and equations (18) and (19) of the SP3 model are
Helmholtz equations. Therefore, as demonstrated below in
this appendix, for these equations it is possible to derive
effective representations of the g(R)/pO2 function of the type
specified by equation (9) of the Helmholtz model described
in section 2.2. The establishment of these mathematical
relationships between Eddington, SP3 and Helmholtz models
is very useful for interpretation of the results presented in
section 3.1, and evaluation of performance of the Eddington
and SP3 models in the general context of the quality of
the fit of the g(R)/pO2 function given by equation (9)
in comparison with the original g(R)/pO2 function of the
Zheleznyak photoionization model specified by equation (3).

Each of the Helmholtz differential equations (8) is similar
to equations for wave potentials commonly encountered
in antenna theory in electromagnetics (Harrington 2001,
p 77). On a conceptual level the electromagnetic problem
corresponds to a case of purely imaginary λj values
for which equation (7) would represent outgoing waves
(Harrington 2001, p 80). In the photoionization problem the
λj values are real, reflecting exponential spatial damping of the
solutions due to the absorption of the photoionizing radiation.
The appearance of the similar Helmholtz equations (15),
(18) and (19) in the Eddington and improved Eddington
approximations to the radiative transfer equation is also
consistent with the above physical interpretation. In
this appendix we demonstrate that the solutions of the
Helmholtz, Eddington and SP3 models can be represented
in a mathematically equivalent form, however, all represent
approximate solutions of the same problem, rely on different
numerical values of the model coefficients and therefore
generally do not lead to identical results.

In this context it is useful to recall that the Eddington and
the Helmholtz models are simply based on different forms of

approximation of the integral specified by equation (1). The
original integral contains a difference of two exponents divided
by R3, the three-group Eddington model approximates the
function under integral by a sum of three exponents divided by
R2 (section 2.3) and the three-exponential Helmholtz model
approximates the same function by three exponents divided
by R (section 2.2). If the problem is solved correctly all the
approximations should lead to solutions consistent with Sph (1).

In this appendix in order to distinguish between
the coefficients involved in the Helmholtz (table 2) and
the Eddington (table 3) models, we will use notations
A∗

j (cm−2 Torr−2), λ∗
j (cm−1 Torr −1) and Aj (cm−1 Torr−1),

λj (cm−1 Torr−1), for the Helmholtz and the Eddington models,
respectively.

We observe that the Helmholtz equation (15) appearing as
part of the development of the Eddington approximation are
similar in structure to (8) and therefore have formal solutions
of the type specified by (7). On these grounds, after simple
algebraic manipulations, we can write the solution for the
photoionization production rate satisfying equation (15) in
the form

Sph(�r) =
∫ ∫ ∫

V ′

I (�r ′)pO2

4πR2
(pO2R)

∑
j

3Ajλj e−√
3λj pO2 R dV ′.

(A.1)

Alternatively, equation (13), representing the same Sph(�r)
before the approximation based in the isotropic part of the
photon distribution function is applied (see section 2.3), can
be written as

Sph(�r) =
∫ ∫ ∫

V ′

I (�r ′)pO2

4πR2

∑
j

Aj e−λj pO2 R dV ′. (A.2)

Having introduced A∗
j = 3Ajλj and λ∗

j = √
3λj , and

remembering that in accordance with (9) and (14)

g(R)

pO2

= (pO2R)
∑

j

A∗
j e−λ∗

j pO2 R =
∑

j

Aj e−λj pO2 R (A.3)

it can be easily seen that equation (A.1) employs exactly
the same form of approximation to the g(R)/pO2 function
as used in the Helmholtz model. These relationships
demonstrate mathematical equivalence between the three-
exponential Helmholtz model based on equation (8) and the
three-group Eddington approximation based on equation (15).

We note that taking the three-group Eddington parameters
from table 3 and calculating the three-exponential Helmholtz
model parameters using the above derived relationships
A∗

j = 3Ajλj and λ∗
j = √

3λj leads to the g(R)/pO2 =
(pO2R)

∑
j A∗

j e−λ∗
j pO2 R function shown in figure A1 by the

dot-dashed line, which does not agree with similar function
shown in figure 2. Thus obtained A∗

j and λ∗
j are different from

those given in table 2.
Alternatively, taking A∗

j and λ∗
j from table 2 and

calculating λj = λ∗
j /

√
3 and Aj = A∗

j /(3λj ) leads to
g(R)/pO2 = ∑

j Aj e−λj pO2 R shown in figure A1 by the dashed
line, which significantly deviates from similar function shown
in figure 3. Similarly to the previous case we note that thus
obtained Aj and λj are different from those given in table 3.

These results demonstrate that although the two model
formulations can be represented in a mathematically equivalent
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Figure A1. Solid line: the g(R)/pO2 function given by equation (3)
from the model of Zheleznyak et al (1982). Dot-dashed line:
equivalent three-exponential fit for the Helmholtz model obtained
from the three-group Eddington approximation. Dashed line:
equivalent three-group fit for the Eddington approximation based on
three-exponential Helmholtz model.

form, additional approximations involved in previous steps
of the derivation of the Eddington model (i.e. related to
the spherical harmonic expansion of the photon distribution
function) lead to different numerical values of model
coefficients and explain why results obtained from these two
models are not identical.

It is interesting to note that since the three-group
Eddington model is based on solutions of the Helmholtz
equation (15) of the form (A.1) with g(R)/pO2 effectively
given by dot-dashed line in figure A1, the discrepancies
observed between the three-group Eddington approximation
and the Zheleznyak model in figures 6(c) and (d) of section 3.1
can be directly linked to the discrepancies between the
g(R)/pO2 and the Zheleznyak model at large pO2R values in
figure A1. The establishment of these relationships is therefore
useful for evaluation of the performance of the Eddington
model.

In view of the above mentioned mathematical relation-
ships between the two models it might be tempting to replace
the parameters of the Eddington model with the ones from the
Helmholtz model providing a better fit. However, this step is
not justified in the context of the rigorous development of the
Eddington and the improved Eddington (SP3) models, and as
discussed in section 3.1 and further reiterated below in this
appendix the SP3 model takes full advantage of the original
accurate fit specified by the parameters given in table 3 and
leads to significantly improved solutions in comparison with
the Eddington model.

We note that the Helmholtz equations (18) and (19)
appearing as a part of the SP3 model are similar in structure to
(8) and have formal solutions of the type (7). By summing
these solutions using equation (16), the corresponding
photoionization rate (20) can be expressed in the form

Sph(�r) =
∫ ∫ ∫

V ′

I (�r ′)pO2

4πR2
(pO2R)

∑
j

A∗
j e−λ∗

j pO2 R dV ′

(A.4)

with the corresponding six pairs of (A∗
j , λ∗

j ) of the equivalent
six-exponential Helmholtz model defined by λ∗

1 = λ1/κ1,
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Figure A2. Solid line: The g(R)/pO2 function given by equation (3)
from the model of Zheleznyak et al (1982). Dot-dashed line:
Equivalent six-exponential fit for the Helmholtz model obtained
from the three-group SP3 model.

λ∗
2 = λ2/κ1, λ∗

3 = λ3/κ1, λ∗
4 = λ1/κ2, λ∗

5 = λ2/κ2,
λ∗

6 = λ3/κ2;

A∗
1 = λ1A1γ2/(κ

2
1 (γ2 − γ1)),

A∗
2 = λ2A2γ2/(κ

2
1 (γ2 − γ1)),

A∗
3 = λ3A3γ2/(κ

2
1 (γ2 − γ1)),

A∗
4 = −λ1A1γ1/(κ

2
2 (γ2 − γ1)),

A∗
5 = −λ2A2γ1/(κ

2
2 (γ2 − γ1)),

A∗
6 = −λ3A3γ1/(κ

2
2 (γ2 − γ1)).

Having taken the three-group Eddington parameters (Aj ,
λj ) from table 3 and calculated the six-exponential Helmholtz
model parameters using the above derived relationships leads
to the g(R)/pO2 = (pO2R)

∑
j A∗

j e−λ∗
j pO2 R function shown

in figure A2 by the dot-dashed line, which is in substantially
better agreement with the original Zheleznyak function in
comparison with the similar equivalent three-exponential fit,
obtained for the three-group Eddington model, shown by the
dot-dashed line in figure A1. The good performance of the
three-group SP3 model in figures 6(c) and (d) of section 3.1
can be directly linked to the better agreement between the six-
exponential g(R)/pO2 fit with the original Zheleznyak function
in figure A2.

In summary, in this appendix we have demonstrated
the mathematical equivalence of the Eddington, SP3 and
Helmholtz models. All solutions of these models can be
written in essentially the same mathematical form, with
differences between these models only arising from different
numerical values of the model coefficients. The presented
analysis demonstrates that the three-exponential Helmholtz
model presented in section 2.2 is more accurate than the three-
group Eddington model presented in section 2.3, in agreement
with results presented in section 3.1. The presented analysis
also demonstrates that the SP3 model can be effectively
represented in a mathematical form equivalent to the six-
exponential Helmholtz model. This approach allows a simple
interpretation of better performance of the three-group SP3

model in comparison with the three-group Eddington model
introduced in section 2.3, and in comparison with the three-
exponential Helmholtz model presented in section 2.3, in
agreement with the results presented in section 3.1.
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