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Abstract
An overview of general phenomenology and proposed physical mechanisms of
large scale electrical discharges termed ‘blue jets’ and ‘gigantic jets’ observed
at high altitude in the Earth’s atmosphere above thunderstorms is presented.
The primary emphasis is placed on summarizing available experimental data
on the observed morphological features of upward jet discharges and on the
discussion of recently advanced theories describing electrodynamic conditions,
which facilitate escape of conventional lightning leaders from thundercloud
tops and their upward propagation toward the ionosphere. It is argued that the
filamentary plasma structures observed in blue jet and gigantic jet discharges
are directly linked to the processes in streamer zones of lightning leaders, scaled
by a significant reduction of air pressure at high altitudes.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Transient luminous events (TLEs) are large scale optical events occurring at high altitudes,
which are related to the electrical activity in underlying thunderstorms [1–4]. Although
eyewitness reports of TLEs above thunderstorms have been recorded for more than a century,
the first image of one was captured only in 1989, serendipitously during a test of a low-light
television camera [5]. Since then, several different types of TLEs above thunderstorms have
been documented and classified and some are illustrated in figure 1. These include relatively
slow-moving fountains of blue light, known as ‘blue jets’ (BJ), which emanate from the top
of thunderclouds up to an altitude of 40 km [6, 7]; ‘sprites’ that develop at the base of the
ionosphere and move rapidly downward at speeds up to 10 000 km s−1 [1, 8–10]; ‘elves’, which
are lightning induced flashes that can spread over 300 km laterally [11–15]; and upward moving
‘gigantic jets’ (GJ), which establish a direct path of electrical contact between thundercloud
tops and the lower ionosphere [3, 16–21].

BJs develop upward from cloud tops to terminal altitudes of about 40 km at speeds
∼100 km s−1 and are characterized by a blue conical shape [6, 7, 22, 23]. Blue starters (BS)
are believed to be closely related to BJs, and they are distinguished from BJs by a much
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Figure 1. Lightning related TLEs. Reprinted from [3] by permission from Nature.

lower terminal altitude. They protrude upward from the cloud top (17–18 km) to a maximum
25.5 km in altitude [23, 24]. BJs were originally documented and classified as such during
airplane based observations [6]. An earlier (October 21, 1989) observation of a phenomenon
closely resembling BJs using the payload bay TV cameras of the space shuttle was reported
by Boeck et al [25]. Ground observations of BJs are believed to be difficult due to severe
Rayleigh scattering of blue light in the atmosphere [22, 26, p 74]. Several ground based video
recordings of jet-like events, which also electrically connected a thundercloud with the lower
ionosphere, have recently been reported [3, 16, 17]. This type of events is now termed GJs [17].
Recent photographic [23] and video [16] observations of jet phenomena above cloud tops at
a close range have shown the small scale streamer-like structure in these events, predicted
in [27], and similar to that reported in sprites [28–31].

A discussion of sprite discharges in the context of their molecular physics and similarity
with laboratory discharges has recently been provided in [32]. The goal of this paper is to
provide an overview of some of the recent experimental and theoretical developments in studies
of BJs and GJs.

2. Streamers and leaders

At atmospheric pressure electrical gas discharges take different forms depending on the
discharge gap size, electrode geometry and material, applied electric field magnitude and
polarity and other factors. These discharges are utilized in many applications including
advanced combustion systems, treatment of flue gases, aerodynamic flow control and energy-
efficient lighting devices [33, and references therein]. The discharges exhibit features ranging
from millimeter scales in atmospheric pressure dielectric barrier discharges, which are of
current interest for deposition of thin film coatings [34], to kilometer scales in tropospheric
lightning discharges [35]. Many known forms of electrical discharges at atmospheric pressure
can be scaled to lower air pressures at higher altitudes in the Earth atmosphere using their
similarity properties. A review of similarity relations and classification of different discharge
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mechanisms in air with focus on the interpretation of the observed features in TLEs is provided
in [36]. In this section we provide an overview of the concepts of streamers and leaders, which
are needed for discussion of BJs, BSs and GJs in sections 3 and 4.

An important reference field for air discharges is the conventional breakdown threshold
Ek defined by equality of ionization and dissociative attachment coefficients [37, p 135]. We
assume Ek � 32 kV cm−1 at atmospheric pressure [38].

Streamers are narrow filamentary plasmas, which are driven by highly nonlinear space
charge waves [37, p 327]. At ground level, the streamer has a radius of 10−1–10−2 cm and
propagates with a velocity of 105–107 m s−1. The dynamics of a streamer is mostly controlled
by a highly enhanced field region, known as a streamer head. A large amount of net space
charge exists in the streamer head, which strongly enhances the electric field in the region
just ahead of the streamer, while screening the ambient field out of the streamer channel.
The peak space charge field can reach a value many times the Ek threshold. The large space
charge field leads to a very intense electron impact ionization occurring in the streamer head.
This ionization rapidly raises the electron density from an ambient value to the level in the
streamer channel, resulting in the spatial extension of the streamer. The streamer polarity
is defined by a sign of the charge in its head. The positive streamer propagates against the
direction of the electron drift and requires ambient seed electrons avalanching toward the
streamer head for the spatial advancement [39]. The negative streamer is generally able to
propagate without the seed electrons since electron avalanches originating from the streamer
head propagate in the same direction as the streamer [40, 41]. The minimum field required for
the propagation of positive streamers in air at ground pressure has been extensively documented
experimentally and usually stays close to the value E+

cr = 4.4 kV cm−1 [42], in agreement with
results of numerical simulations of positive streamers [43, 44]. The absolute value of the
similar field E−

cr for negative streamers is a factor of 2–3 higher [37, 43, p 136]. One of the
estimates of this field is E−

cr = 12.5 kV cm−1, in accordance with figure 7 in [43]. The value
E−

cr � 12.5 kV cm−1 is not well established, and different sources list various values ranging
from 7.5 kV cm−1 [45] to 10 kV cm−1 [46, p 198]. The fields E+

cr and E−
cr are the minimum

fields needed for the propagation of individual positive and negative streamers, but not for their
initiation [27]. Streamers can be launched by individual electron avalanches in large fields
exceeding the Ek threshold or by initial sharp points creating localized field enhancements,
which is a typical case for point-to-plane discharge geometries [47, 48]. The possibility of
simultaneous launching (in opposite directions) of positive and negative streamers from a
single midgap electron avalanche is documented experimentally [37, 49, p 335] and reproduced
in numerical experiments [38, 50, 51]. The pressure scaled streamer-type discharges exist in
sprites [10, 31]. The scaling properties of streamers as a function of gas pressure, and their
geometrical discharge patterns (i.e. branching) are affected by photoionization properties of the
gas through which they propagate. Significant efforts have been devoted to the development
of efficient models of photoionization [51–55].

The breakdown in air gaps of many meters at atmospheric pressure and in lightning
discharges occurs via growth of a leader from one electrode to the other: a thin channel
that is conducting, with conductivity orders of magnitude higher than the streamer channel
[37, p 327]. The conducting channel transfers the electric potential of the supporting electrode.

A strong enhancement of the electric field is present in the leader head. The ionization process
in the leader head transforms the medium into a conductor. The electron density of the leader
and streamer channel just behind of their respective heads is of the same order; however,
the conductivity of a streamer channel often decreases due to attachment or recombination
processes while the leader channel is able to keep its conductivity relatively constant. The
key processes contributing to sustainment of the conducting leader channel are accelerated
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direct, stepwise and associative ionization and detachment reactions by the elevated gas
temperature in the leader channel [46, p 59]. The head of the highly ionized and conducting
leader channel is normally preceded by a streamer zone looking as a diverging column of
diffuse glow which is filled with highly branched streamers [56, p 203, 253]. Many streamers
connect to the tip of the leader and draw a large total current from it, and this large current
can heat the gas in the leader channel to the required temperature 5000–6000 K for streamer-
to-leader transition. Due to its high conductivity, the leader channel can be considered as
equipotential [37, p 364]. In large experimental gaps (>100 m) and in thunderclouds, the
electric fields required for propagation of positive and negative polarity leaders are known to
be nearly identical; however, the internal structure of their streamer zones, which is closely
associated with the direction of electron avalanches, is very different (see [37, p 375] and
[56, p 253]). The minimum electric field capable of supporting the propagation of leaders in

a several tens of meters gap is El ∼ 1 kV cm−1, and this field can be as low as a few hundreds
V m−1 for lightning leaders [45].

Under thunderstorm conditions, due to its equipotential properties, the leader head can
carry a large portion of the cloud potential U = 10–100 MV toward the ground. A half of
this potential drops in the leader streamer zone [46, p 253]. The electric fields in streamer
zones of positive and negative leaders remain at constant values E+

cr � 4.4 kV cm−1 and
E−

cr � 12.5 kV cm−1, respectively. This is supported by measurements inside the streamer
zones of positive [57] and negative [58] leaders, which indicate that E+

cr and E−
cr are close to

the integral fields established by positive and negative streamer coronas in regions of space
through which they propagate. The size of the streamer zone can therefore be simply evaluated
as Rs � U/2E±

cr . Assuming that U = 20 MV, the streamer zone size of a negative leader can
be evaluated as Rs � 10 m.

The streamers in both positive and negative leaders originate from the surface of the
leader head. It is believed that at the surface of a leader head the electric field can reach values
comparable to Ek (i.e. ∼1.5Ek [46, p 68]). The frequency with which a leader head emits
streamers is estimated to be ∼109 s−1, and about 105 streamers are present in a leader streamer
zone at any given time [46, p 70].

Although details are still not fully understood, the published laboratory experiments
and observations of natural lightning indicate a quasi-continuous development of positive
leaders and a more impulsive, stepwise development of negative leaders. References [45] and
[46, p 197] represent two sources, covering the stepping process in detail and allowing one to

appreciate the many complex features of the phenomenon.
One of the components of the stepping process in negative leaders is the formation of a

‘space leader’, which originates near the external boundary of the negative streamer zone. The
space leader propagates as a bi-directional discharge, whose positive end propagates toward the
negative leader head. The junction of the space leader with the negative leader head resembles
a return stroke accompanied by a strong illumination of the entire leader channel. The tip of
the main leader ‘jumps’ over to a new location, which was previously occupied by the space
leader, and delivers to it the high potential of the previous leader head. The sudden rise in
the space leader potential causes the inception of a negative corona flash [46, p 199]. The
length of the new streamer zone is determined by the same relationship Rs � U/2E−

cr . A new
space leader originates near the external boundary of the newly formed negative streamer zone
and the process is repeated. The negative corona flash stage of the development of negative
leaders at thundercloud altitudes and GJs above cloud tops is believed to be responsible for
production of thermal runaway electrons, which can reach relativistic energies (>10 MeV)
and may be responsible for x-ray and γ -ray bursts observed during lightning discharges on the
ground [59, 60] and on satellites [61, 62], as proposed in [63].
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The above-mentioned values of Ek , E+
cr, E−

cr and El correspond to ground pressure. We
assume that most of these fields can be directly scaled proportionally to atmospheric neutral
density N to find corresponding values at altitudes of BJs, BSs and GJs. This approach
is generally justified by similarity laws [36]. We note, however, that the actual scaling of
E+

cr and E−
cr for the altitude range covered by BJs, BSs and GJs has not yet been verified

experimentally, and the simple scaling of E+
cr and E−

cr proportionally to N should be considered
as an approximation. The exact details of the El field scaling with N are not known at present.
The El field is related to Joule heating and may exhibit deviations from the N scaling [64].

It is helpful to put BJs and GJs in relationship with different polarity leader processes.
Assuming that both types of jets originate from streamer zones of conventional lightning leaders
propagating upward from thundercloud tops, the continuous positive leader-like propagation
of optically observed BJs should be contrasted with the impulsive rebrightening of GJs,
resembling negative leader processes [65]. The polarity itself is not sufficient to explain
all the morphological differences in jet events observed to date (as discussed in the following
sections the location of jet initiation and charge configuration in a thundercloud are also defining
parameters for jet development). Nevertheless, most of the GJs and BJs observed to date are
believed to be associated with normal polarity thunderstorms and we will associate BJs with
positive leaders and GJs with negative leaders. The GJs are visually more energetic than BJs,
they extend to higher altitude than BJs and have more impulsive and structured appearance.
Although to date absolute optical intensities of BJs and GJs have not yet been compared, their
appearance in available video records (i.e. figure 2) allows us to speculate that GJ events are
also optically brighter. An extensive discussion on possible classification schemes of different
jet events is given in [65, and Supplementary Information therein].

3. Phenomenology of BJs, BSs and GJs

Reports of unusual large scale luminous discharges above thunderclouds have appeared in the
scientific literature for over a century [66–79]. For reviews of these observations, readers are
referred to [7, 80, 81]. Boeck et al [82] summarize early observations of TLEs, and discuss an
important role of the space shuttle videotape observations during the years before 1993 in the
search, discovery and confirmation of various types of TLEs known to us today. Many early
reports contain details of discharges describing typical features of BJs [6, 22] or GJs [16, 17].
Heavner [26] provides a summary of old and more recent anecdotal reports of TLEs, some of
which closely correlate with known features of BJs and GJs.

During the Sprites 1994 aircraft campaign two jet aircraft equipped with both black and
white and color cameras were used to capture the first images of BJs and BSs [1, 6]. During
one mission on the night of July 1, 1994 Wescott et al [6] reported capturing fifty-six examples
of BJs—further analysis of the images later showed that five of these images were actually
BSs [24]. Thirty-four of the remaining fifty-one BJs were viewed by both aircraft, giving
sufficient data for BJ triangulations [22].

From the triangulations of thirty-four BJs, Wescott et al [22] calculated the mean starting
altitude for BJs to be 17.7 km, and their upper extent was 37.2±5.3 km. Analyses of sequences
of images captured over the lifetime of blue jets show vertical velocities of 112±24 km s−1 [6].
The cone angle of 18 BJs was measured by Wescott et al [6] to be 14.7◦±7.5◦, and the observed
lifetime of BJs was 200–300 ms, with the jet brightness decaying simultaneously along the
entire jet.

BSs resemble BJs, but BSs terminate at much lower altitudes. Wescott et al [24] calculated
the starting altitude of 30 BSs to be 17.7 ± 0.9 km, with terminating altitudes ranging from
18.1 to 25.7 km. The velocities of six BSs were measured by Wescott et al [24], ranging from
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Figure 2. The dynamics of the GJ event [16]. Panels (a)–(i) correspond to frames 6–14 as discussed
in the text. Reprinted from [16] by permission from Nature.

27 to 153 km s−1, although these velocities varied over the lifetimes of the starters. Wescott
et al [23] recorded fifteen possible BSs, with one event positively identified as a BS and showing
evidence that it was partially ionized. While BSs do not appear to coincide with either positive
or negative cloud-to-ground (CG) flashes, the rate of negative CG flashes is constant prior to
a starter, followed by an abrupt decrease for ∼3 s after the event, followed by the resumption
of lightning activity [24].

Additional characteristics of BJs include association with both high negative cloud-to-
ground discharge rates—although not with a particular flash—and large hail [22], as well as
more frequent occurrences earlier in thunderstorm life [6, 26, p 20]. BJs are neither absolutely
vertical nor aligned with the geomagnetic field.

Lyons et al [7] reported 17 upward propagating discharges arising out of the convective
dome of a high plains supercell storm. The discharges were estimated to be less than 200 m
wide and they did not grow more than 1 km above the cloud top. They appeared to be brighter,
much more compact in shape and more optically uniform than the BSs described in [24]. Lyons
et al [7] speculated that these events could be BSs which appeared brighter when imaged at a
close range using a next generation intensified imager. Alternatively, they may also represent
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events of different (i.e. negative) polarity with respect to BSs reported in [24], as recently
suggested in [65].

The first ground video recording of a GJ event, which also electrically connected a
thundercloud with the lower ledge of the Earth’s ionosphere at about 70 km altitude, has been
obtained from a very close range, ∼200 km [16]. The event lasted a total of 24 video frames
(∼33 ms each) and concluded with an intense lightning flash in the underlying thundercloud.
Figure 2 shows a sequence of nine images extracted from frames 6 through 14. The full
video sequence is available at http://pasko.ee.psu.edu/Nature. The apparent speed of upward
propagation of the observed phenomenon remained remarkably stable during the first five
frames and is estimated to be 0.5×105 m s−1 (±0.07×105 m s−1), consistent with known speeds
of the leader process in conventional lightning [83]. The speed increased to 1.6 × 105 m s−1

between frames 5 and 6 and to 2.7 × 105 m s−1 between frames 6 and 7. The analysis of two
video fields corresponding to frame 8 indicates that the large altitude change between frames 7
and 8 happened in two steps. During the first field the left branch, clearly visible in frame 7,
extended up to the altitude ∼70 km, while during the second field the right branch formed with
a wider tree-like structure. The altitude change ∼32 km for the left branch and ∼37 km for
the right branch happened faster than the duration of one video field (16.7 ms). The estimated
speed in the range (1.9–2.2) × 106 m s−1 therefore represents a lower possible value of the
actual speed, which likely was higher [16].

The term ‘gigantic jet’ was introduced in [17]. Su et al [17] reported observations of five
GJs that established a direct link between a thundercloud (∼16 km) and the ionosphere at about
90 km elevation. Extremely-low-frequency radio waves from four events were detected, while
no CG lightning was observed to trigger these events [17]. The results in [17] indicated that
GJs had negative polarity and therefore resembled negative cloud-to-ionosphere discharges.
The morphology of the observed events was classified in two categories: ‘tree’ jets and ‘carrot’
jets. Su et al [17] also described three distinct stages of evolution of GJs: leading jet, fully
developed jet and trailing jet. The form and evolution of the leading jets reported in [17] were
similar to the event reported in [16], but had a much shorter duration and propagated to a
higher altitude, possibly reflecting variations in strength of thundercloud sources producing
these events. In terms of stages of evolution proposed in [17] panels (a) and (b) in figure 2
could be classified as the leading jet stage, panels (c) and (d) as the fully developed jet and
panels (e) through (i) as the trailing jet stage. Several tens of coulombs of negative charge can
be transferred in one GJ event from the thundercloud to the lower ionosphere [17].

The photographic [23] and video [16] observations of upward jet discharges have clearly
shown the filamentary streamer-like structure of these events (see figure 2) predicted in [27].
We note that Petrov and Petrova [27] originally proposed a streamer zone of positive leader as
a mechanism for BJs and suggested a conceptual relationship of sprites and negative stepped
leaders.

A jet event over northern Mexico closely resembling morphological features of previously
documented GJs has been recently reported in [21]. The previous records of GJs were obtained
from Puerto Rico [16] and Taiwan [17] over oceanic thunderstorms in tropical regions. The
GJ [21] was imaged with 4 s time resolution and represented a first observation of this type
of phenomenon over continental North America. The estimates presented in [21] indicate
that the bright lower channel ended in a fork at around 50–59 km height with very dim upper
branches extending to 69–80 km altitude. In terms of terminology introduced in [17] the bright
lower channel most likely corresponds to the persisting in time leading and trailing jets and the
dim upper branches to a relatively transient fully developed jet. The electromagnetic records
available during the time interval of the GJ indicated no significant charge moment changes
of the magnitude characteristic of sprite discharges. Following the GJ event 30 sprites were
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observed on the same night by the same imaging instrument allowing an indirect comparison
of the GJ brightness and sprite brightness. van der Velde et al [21] stated that while the bottom
of GJ channel had appeared of similar brightness as the brightest of tendrils of the subsequent
sprites, the wispy top part appeared much less luminous. Having assumed that the durations
of the upper branches and sprites are the same, the brightness of the upper branches must have
been less than most sprites [21].

Krehbiel et al [65] recently reported observations of an upward jet, which was obtained
with a three-dimensional very high frequency (VHF) lightning mapping array [84] during the
STEPS 2000 campaign [85]. This observation is especially important for the understanding
of mechanisms of jet discharges discussed in the next section as it provided information about
evolution of lightning and charge structures inside the cloud prior to the jet discharge. The jet
lasted 120 ms and propagated 4 km upward in the first 60 ms to 13.5 km altitude, 2 km above the
radar-detected cloud top. No imaging data are available for this event, but its development was
characteristic of an upward negative leader [84, 86] that would have been visible above the cloud
top. This discharge may have been similar to the upward propagating discharges observed later
during STEPS [7]. Krehbiel et al [65] also reported VHF and photographic observations of
so-called ‘bolts-from-the-blue’ (BFB) lightning discharges, which provided key information
needed for the understanding of formation of negative GJs above cloud tops (see next section).
Classical, normally electrified thunderstorms have a dominant dipolar electrical structure
consisting of mid-level negative and upper-level positive charges, augmented by lower positive
charge and negative screening charge at the upper cloud boundary [87, 88] (see figure 4(a)).
VHF mapping observations show that BFB discharges begin as regular, upward-developing
intracloud flashes in normally electrified storms [84, 86, 89] (e.g. figure 4(a)). Instead of
terminating in the upper positive charge, however, the breakdown continues horizontally out
of the upper side of the storm and turns downward to the ground (e.g. figure 4(e)). Although
the lightning channel outside the cloud appears to originate in the upper positive charge, the
leader continues to be of negative polarity and the resulting cloud-to-ground stroke lowers the
negative charge to the ground from the storm mid-level [65].

BJs and BSs have been captured by black and white and color video cameras, allowing
for some important conclusions concerning optical bands responsible for the observed blue
color [6]. Evidence from color TV suggesting that the blue light must have an ionized 1st
negative N+

2 component has been presented in [22]. The first conclusive evidence of 427.8 nm
(one of the bands in the 1st negative N+

2 band system) emission in BSs has been reported in [23].
The authors of [23] also analyzed color TV frames associated with BSs and concluded that the
combined red and green channel intensity constituted 7% of the total blue channel intensity.

In 1957, Rumi published the first VHF radar data indicating that thunderstorms produce
additional ionization of the middle atmosphere [90], possibly related to BJs and GJs known
today. High frequency echoes from middle atmospheric ionization potentially associated with
high-altitude discharges were reported by Roussel–Dupre and Blanc [91]. A first attempt to
detect lower ionospheric effects of lightning using Arecibo Observatory incoherent scatter radar
(ISR) was made in [92]. No lightning location and timing information was available during this
study and no D-region density changes were detected [92]. The attempts to reproduce Rumi’s
experiments using VHF radars brought contradictory results [93–95]. To date the levels of
ionization in BJs and GJs have not yet been conclusively probed with HF/VHF/UHF radars.

We note that there are several features in sprite type of TLEs, which exhibit some close
similarities with BJs, BSs and GJs. For instance, a secondary breakdown process having a
form of thin multiple fingers which started near the horizon and propagated upward toward the
remnants of a sprite was reported during the EXL98 campaign [96]. These observations have
been previously discussed in the context of possible attachment of sprites to cloud tops, creating
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favorable conditions for establishing a highly conducting link between the Earth’s surface and
the lower ionosphere [97]. So-called ‘trolls’ are jet-like features propagating upward from
near cloud tops to 40–50 km at 150 km s−1 along the preceding sprite tendrils [98]. There are
some similarities in the appearance of the GJs and the so-called ‘palm tree’ events, which are
vertically extended emissions consisting of a single stem coming up the cloud top and spreading
out into a wider crown near 60–70 km altitude and which follow the occurrence of large groups
of sprites and exhibit the same red color as sprites [26, 99]. However, some other features of the
GJs, such as their long duration, the altitude extent and no apparent association with a positive
CG lightning discharge, do not match those typical for sprites. Additional information on
secondary sprite processes near cloud tops become available with introduction of high speed
(∼1 ms resolution) video observations of sprites [100]. Moudry [99] provides a summary of
three distinct types of these secondary processes, which are broadly referred to as ‘crawlers’.
So-called ‘smooth crawlers’ appear as beads of slowly varying luminosity moving upward with
speeds on the order of 104 m s−1, without any apparent connection to clouds [99]. An ‘embler’
typically develops and brightens over ∼1 ms as a small (<2 km diameter) bead within decayed
sprite tendrils at an altitude <60 km [99]. The bead then decays in brightness while remaining
stationary, but initiates a secondary, down-propagating patch of luminosity toward the cloud
top that moves at a speed on the order of 106 m s−1 [99]. After 1–30 ms, another bead may
brighten (on average at the position higher than its predecessor) and initiate the downward-
moving brightness [99]. This irregular upward stepping process is only resolved with 1 ms
resolution imaging and with standard TV-rate (16–33 ms) cameras the downward motion of
the individual emblers is blurred and only the average upward motion is visible [99]. The
third type of crawlers corresponds to above-mentioned ‘palm trees’. Marshall and Inan [101]
estimated velocities of upward propagating palm trees to be at least 1.5 × 106 m s−1. In
contrast to previous conclusions reported in [26] the analysis of photometric data reported
in [101] indicates that palm trees are likely to be predominantly blue. The average altitudes
of palm trees were estimated to be between 32 ± 4 and 57 ± 6 km, and the authors noted
that observations at altitudes lower than 32 km were difficult due to cloud obstruction and
atmospheric attenuation [101]. Moudry [99] noted that the jet event observed in [16] may be
an example of a crawler, which was not preceded by a sprite. This is a valid hypothesis as
both processes may share common discharge physics of negative stepped leaders modified by
a significantly reduced air density above cloud tops. No high time resolution video records
(i.e. milliseconds and sub-milliseconds) of BJs, BSs and GJs are available yet.

4. Physical mechanisms and modeling BJs, BSs and GJs

Theories of BJs and GJs may be classified into two general categories: (1) the mechanism
of conventional air breakdown based on streamers and leaders [27, 65, 81, 102–108] and
(2) the mechanism of relativistic runaway air breakdown [109–114]. Several reviews of jet
theories have been published [22, 115–117]. No theory has yet accounted for all BJ and GJ
characteristics.

The relativistic runaway air breakdown is admittedly the most attractive mechanism by
which the γ -ray flashes of terrestrial origin (TGFs) [61, 62] can be produced in the Earth’s
atmosphere ([118, 119] and references therein). However, recent observations of x-rays from
relatively compact regions of space associated with steps of negative lightning leaders [59, 60]
and theoretical analysis presented in [63] indicate the existence of direct acceleration of thermal
(i.e. originally several electronvolts) electrons to >10 MeV energies in streamer zones of
conventional lightning leaders. These thermal runaway electrons can provide an alternative
source of relativistic electrons which were previously thought to require galactic cosmic rays
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and a relativistic avalanche multiplication process with spatial scales exceeding dimensions
of streamer zones of lightning leaders by orders of magnitude ([120–122] and references
therein). The results of a numerical modeling of the relativistic runaway air breakdown
demonstrate that this process may account for the observed blue color of BJs [111, 114].
The current theories based on conventional air breakdown generally favor a phenomenological
link between BJs and GJs and streamer zones of lightning leaders and it has been suggested
that the thermal runaway electron process operating in leaders may contribute to the production
of TGFs from the jet discharges [63]. However, the link between TGFs and BJs and GJs has
not yet been established experimentally. The existing theories of BJs and GJs based on the
relativistic electron multiplication mechanism originally proposed in [120] do not specifically
address most of the currently known geometrical and dynamical characteristics of BJs and GJs
summarized in section 3.

Early theories of BJs based on conventional air breakdown suggested the concepts of
positive [102] and negative [103] streamers as the underlying physical mechanism for this
phenomenon. The Pasko et al [102] model proposes that BJs are driven by an electric field
created by a fast-growing positive charge at the thundercloud top, with no associated lightning
activity. The model of Sukhorukov et al [103] proposes that a strong intracloud discharge
creates the BJ driving field. These models were able to describe some of the observed
characteristics of BJ dynamics. The main difficulty of both models is that both effectively
postulated the transverse size of modeled streamers, which therefore have not been modeled
fully self-consistently [102, 103] (see also related discussion in [116]). As a result, both models
used substantially underestimated values of the electric field around the streamer fronts and
therefore produced unrealistically high red emission intensities, when compared with the color
video observations [6, 22]. The subsequent analysis of similarity laws for streamer discharges
at different altitudes above thunderstorms established that at typical altitudes at which BJs
are observed (∼30 km), the atmospheric pressure-controlled transverse dimension of stably
propagating streamers should be on the order of several centimeters [32, 123], substantially
lower than streamer sizes postulated in [102, 103].

Petrov and Petrova [27] proposed that BJs correspond qualitatively to the development
of the streamer zone of a positive leader and therefore should be filled with streamers. Pasko
et al [104] applied a 2D and Pasko and George [81] 3D fractal models of streamer coronas
to describe observed shapes of BJs and GJs. The predictions in [27] and the modeling
results in [81, 104] appeared to be in remarkable agreement with the recent experimental
discoveries indicating the streamer-like structure of jet discharges [16, 23]. Although Petrov
and Petrova [27] discussed positive leaders and one or both events in [16, 23] may correspond
to negative polarity events, this does not diminish the importance of predictions by Petrov and
Petrova [27], who for the first time linked the observed jet events to streamer components in
leader processes.

Pasko and George [81] proposed that conditions leading to the formation of BJs and BSs
include a fast (∼1 s) accumulation of ∼110–150 C of positive thundercloud charge distributed
in a volume with effective radius ∼3 km near the cloud top at ∼15 km and postulated the
presence of a conventional positive leader above this charge center. Pasko and George [81]
(see also [124]) note that the experimentally documented electric fields E+

cr and E−
cr required

for propagation of streamers, which constitute essential components of the leader streamer
zone, are substantially higher than the ambient fields typically observed in thunderclouds, and
as a result the leader streamer zone is normally confined to a limited region of space around
the leader head. A remarkable feature of the streamer corona is that in spite of its internal
complexity its macroscopic characteristics remain stable under a variety of conditions, and
the measurements inside the streamer zone of positive [57] and negative [58] leaders indicate
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Figure 3. (a) Examples of the nighttime atmospheric conductivity distributions [81, 125, 126]
including information on the dielectric relaxation time τσ = εo/σ at selected altitudes, which is
important for the definition of terminal altitudes of jets [16, 81]. (b) Ratio of the combined red and
green emissions to the total blue emission as a function of altitude [81]. Reprinted from [81] by
permission from American Geophysical Union.

that the E+
cr and E−

cr fields are also close to the integral fields established by positive and
negative streamer coronas, respectively, in regions of space through which they propagate.
Pasko and George [81] suggest that if, due to the fast growth of the thundercloud charge,
the large scale electric field does exceed the E+

cr threshold, then positive streamer coronas,
which are normally confined close to the leader head, can quickly (with speeds >105 m s−1,
exceeding typical leader speeds ∼2 × 104 m s−1 [56, p 227]) fill a large volume of space in
the vicinity of a thundercloud. The streamer coronas themselves self-consistently modify the
electric field distribution. Results of 3D fractal modeling of streamer coronas under these
circumstances [81] demonstrate that under a variety of initial conditions the streamer coronas
form upward propagating conical shapes similar to the experimentally observed geometry of
BJs. The results in [81] resemble BJ and BS characteristics in terms of their altitude extents,
transverse dimensions and conical structure and indicate that BSs are related to the initial
phases of BJs.

The importance of the ambient conductivity at the stratospheric altitudes for the formation
of jets has been discussed in [112]. The conductivity σ defines an effective dielectric relaxation
time scale (εo/σ ) over which the conducting medium responds to changes in the applied electric
field. Shaw [112] speculated that in order to bring and sustain large electric fields needed for
the development of BJs at stratospheric altitudes some special mechanism is needed to either
preferentially place charge center at higher altitudes or to reduce electrical conductivity of the
air above cloud heights. It was proposed in [112] that the reduction of σ above clouds due
to large ions associated with pollution aerosols transported to the lower stratosphere/upper
troposphere by upward convective currents can result in the development of higher electric
field strengths above cloud tops.

Figure 3(a) shows examples of the nighttime atmospheric conductivity distributions
[81, 125, 126]. The low-latitude profile in figure 3(a) is consistent with σ = 6 × 10−12 S m−1

recently measured in Brazil at 34 km altitude above a thunderstorm [127] and is consistent
with σ = 1.1 × 10−12 S m−1 at 20 km altitude in a model recently proposed in [128].
The conductivity measurements conducted over thunderstorms from high-altitude NASA U-2
airplane in the US in the summer of 1986 indicated values of σ = 4.5 × 10−12 S m−1 at 20 km
altitude [129], consistent with σ = 7 × 10−12 S m−1 at 20 km for the mid-latitude profile in
figure 3(a). The same U-2 measurements indicated fields ∼7 kV m−1 at 20 km over intense
storm centers [129], which were a factor of 4 lower than E+

cr = 30 kV m−1 at 20 km altitude.
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There were no clear indications from the conductivity data alone to indicate that the plane
was over a storm [129]. Instead the conductivity remained rather steady as the U-2 aircraft,
which flew at a nearly constant altitude, repeatedly approached, passed above and then receded
from storm cells [129]. These findings are not consistent with conductivity reductions above
thunderstorms suggested in [112].

The role of atmospheric conductivity in the definition of upper terminal altitudes of BSs,
BJs and GJs and in the formation of the jet type of phenomena in general is discussed in [81]
in the context of a ‘moving capacitor plate’ model originally proposed by Greifinger and
Greifinger [130–134] to characterize the electrodynamic response of the weakly-conducting
middle atmosphere to fast charge rearrangements at lower (i.e. thundercloud) altitudes. The
lower values of σ and longer dielectric relaxation times τσ = εo/σ above cloud tops observed
at low latitudes (see figure 3(a)) should create more favorable conditions for creation of jets
in tropics in comparison with mid-latitudes [16].

The fractal model developed in [81] allows an accurate determination of the macroscopic
electric fields in regions of space occupied by streamers. The results for positive polarity
events indicate that for a variety of input parameters these fields are close to E+

cr, consistent
with earlier findings [97, 104, 135, 136] and measurements of Petrov et al [57]. We note,
however, that the low fields on the order of E+

cr are generally not sufficient to excite
any observable optical emissions [81]. The fractal model does not allow direct modeling
of physics of streamers, does not resolve microscopic properties of individual streamer
channels constituting streamer coronas and therefore does not allow resolution of the regions
of space around streamer tips. It is known that the electric field enhancements around
streamer tips reach values ∼5Ek [38–40, 43, 51, 123, 137]. This property of streamers is
also valid for positive streamers propagating in low ambient electric fields comparable to
E+

cr [44, 54, 138, 139], similar to the ambient conditions for propagation of streamer coronas
considered in [81]. Therefore, the observed optical luminosity in BJs and BSs arises from large
electric fields existing in narrow regions of space around tips of small scale corona streamers
constituting them.

Figure 3(b) presents a comparison of recent spectral observations reported in [23] discussed
in section 3 and the calculated ratio of the combined red and green emissions to the total
blue emission assuming the driving field to be 5Ek . The comparison is performed using
an optical model documented in [38, 81] and accounts for the atmospheric transmission
and aircraft window corrections [23]. The resultant ratio is in agreement with the recent
analysis of color TV frames associated with BSs reported in [23], which concluded that
the combined red and green channel intensity constituted 7% of the total blue channel
intensity.

Tong et al [105] investigated conditions for initiation of GJs above thunderclouds in
terms of geometry, magnitude and altitude of thundercloud charges. Having considered
the evidence that GJs are analogous to negative cloud-to-ionosphere discharges [17], Tong
et al [105] associated the GJ process with an upward propagating negative streamer assuming
that the pressure scaled thundercloud electric field should exceed the Ek threshold in order
to initiate the GJ. It was found that a negative charge −203.57 C with a spherically
symmetric Gaussian distribution with scale 2 km placed at altitude of 16 km would satisfy
this criteria at altitude 18.63 km. Tong et al [105] have not considered the leader process as a
mechanism of GJs.

Tong et al [106] developed a 3D model of GJs in which upward propagation of a negative
stepped leader is considered as a field controlled random growth process. The thundercloud
is considered as one electrode igniting GJs and the ionosphere is assumed as the other. The
discharge propagation concept of the model presented in [106] is similar to the fractal models
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developed previously in [81, 140]. In contrast to [105], in [106] the GJ in its entire altitude
extent is considered as a negative leader phenomenon. The physics of stepping of negative
leaders and their streamer zones has not been modeled in [106]. The model assumed the
ground pressure value of the field inside the leader channel to be equal to El = 1 kV cm−1.
This field was reduced exponentially with scale height of 10 km at higher altitudes. The same
criteria for initiation of GJs as in [105] based on the Ek threshold were employed in [106].
After the leader initiation, it was allowed to propagate as soon as the field remained above
the E−

cr threshold. The ground pressure value of E−
cr was assumed to be 12.5 kV cm−1 and

scaled down exponentially with altitude with scale 8 km. The model produced propagation
of the model channels up to 72 km altitude and agreed well with the overall picture of the
observed GJs. The initiation criteria for GJs presented in [105, 106] based on the Ek threshold
have the same limitations as an earlier work by Pasko et al [102] as it requires unusually high
magnitudes and concentrations of thundercloud charges. In [106] the altitude scaled values
of the leader channel field El and the leader propagation field E−

cr become equal at 101 km
altitude; however, implications of this relationship for terminal altitudes of GJs have not been
discussed.

Raizer et al [107, 108] associated both BJs and GJs with streamer zone of a positive leader,
which is postulated to be initiated above the positive charge center positioned at altitude 12 km.
Raizer et al [107, 108] demonstrated that upward transfer of the high thundercloud potential
by a leader channel to lower air density regions with a proportionally lower E+

cr threshold for
propagation of streamers allowed the sustainment of BJ streamers by moderate cloud charge
of 50 C with radius 3 km. Raizer et al [107, 108] summarized the properties of streamer zones
of leaders, which are of importance for the interpretation of observations of BJs and GJs. At
ground level the three-body electron attachment time scale at fields around E+

cr is ∼0.1 µs (see
figure 1a in [38]) and at 18 km is ∼10 µs (increased inversely proportionally to the air density
squared). Raizer et al [107, 108] explain that these short times of electron losses do not allow
existences of long streamers, and a streamer zone of the leader is filled with a large number
of streamers having different initiation times and lengths. The frequency with which a leader
head emits streamers is estimated to be ∼109 s−1 [46, p 70], and only the ‘younger’ shorter
streamers are connected directly to the leader tip, while ‘old’ advance through the streamer
zone with substantially decayed electron density in their tails, and both types of streamers
act collectively to establish a positive macroscopic charge density in the streamer zone of the
positive leader maintaining the electric field at the E+

cr level [107, 108]. The fractal model
employed in [81] is not capable of resolving the physics of individual streamers (i.e. high
fields in streamer tips) and links connecting grid points should not be directly interpreted as
streamer channels. The fractal model is physically adequate for representation of an integral
action of many streamers in the leader streamer zone in agreement with experiments [58, 57]
and for modeling of volumetric properties of sprites and jets as explained in [81, 97, 136]. The
existing video records of BJs and GJs are obtained with time resolution ∼16 ms, which in
accordance with recent high speed video observations of streamers in sprites [29, 30, 31] is
about two orders of magnitude greater than ∼50 µs needed to resolve dynamics of individual
streamer heads at altitudes ∼70 km. It is highly likely therefore that the individual channels
in figure 2 are produced by superposition and time averaging of many bright streamer heads
as they moved through the camera’s field of view. These sub-millisecond features of BJs and
GJs remain unresolved in existing records.

In addition to disagreement with the inferred negative polarity of GJs, the limitation
of models proposed in [81, 104, 107, 108] in support of the original idea expressed in [27]
that jets correspond to the upward development of the pressure scaled streamer zone of a
conventional leader is that they all postulate the presence of a leader near the cloud top
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without providing a link to experimentally documented charge distributions and lightning
phenomenology in thunderstorms leading to the initiation and upward escape of the leader
process from the thundercloud top. There is an experimental evidence that GJs are initiated
as normal polarity intracloud lightning discharges between upper positive and lower negative
charge centers [65, 141] and the models advanced in [81, 104, 107, 108] do not reflect related
scenarios.

Recently, Krehbiel et al [65] discussed the charge imbalances in thunderstorms as a
fundamental condition allowing propagation of leaders downward as CG lightning or upward
as jet discharges, therefore demonstrating that upward discharges are analogous to cloud-to-
ground lightning and providing a unified view on how lightning escapes from a thundercloud.
Krehbiel et al [65] note that in accordance with the existing experimental evidence the lightning
initiation happens between adjacent charge regions of different polarities where the electric field
is maximum. If the negative and positive charge centers are approximately equal in magnitude
the bi-directional discharge propagates in the form of positive leaders inside the negative charge
region and in the form of negative leaders inside the positive charge region [35]. In this situation
the leader system, which is assumed to be overall equipotential and neutral, remains at nearly
zero potential [35]. Krehbiel et al [65] demonstrate that when the two charges are not balanced
the leader potential can be significantly shifted in the direction defined by the charge with
dominant magnitude and the propagation of the leader becomes essentially independent of the
weaker charge center, allowing it to penetrate through the weaker charge center and to escape
from the thundercloud. Krehbiel et al [65] present a combination of observational and modeling
results that indicate two principal ways in which upward discharges can be produced. The
related experimental results have already been reviewed in section 3. The modeling presented
in [65] indicates that BJs occur as a result of electrical breakdown between the upper storm
charge and the screening charge attracted to the cloud top; they are predicted to occur 5–10 s
or less after a cloud-to-ground or intracloud discharge produces a sudden charge imbalance
in the storm. GJs are indicated to begin as a normal intracloud discharge between dominant
mid-level charge and a screening-depleted upper-level charge, which continues to propagate
out of the top of the storm [65]. Figure 4 summarizes the results of simulating different types of
discharges in normally electrified storms from [65] using a lightning model [35], which satisfies
a hypothesis of equipotentiality and overall neutrality of the discharge [142, 143]. The type
of discharge results from a competition as to where breakdown is triggered first. Intracloud
discharges usually win this competition because they occur between the two strongest charge
regions during a storm’s convective stages (figure 4(a)) [65]. The negative -CGs (figures 4(b)
and (e)) occur as descending precipitation generates a lower positive charge [88] or as the
storm accumulates a net negative charge and can go either directly to ground or indirectly as
a bolt-from-the-blue discharge [65]. The negative -GJs (figure 4(f )) provide an alternate way
of relieving the mid-level negative charge, by discharging it to the upper atmosphere rather
than to the ground [65]. The positive +BJs do the opposite, namely, transport positive charge
upward (figure 4(d)) [65].

Results presented in [65] provide experimentally substantiated mechanisms of escape
of lightning leaders from cloud tops complementing the previous theoretical works
[27, 81, 104, 106–108]. The application of ideas advanced in [107, 108] concerning the
possibility of mapping high potentials at the cloud top to higher altitudes using conducting
leaders depends on the possibility of sustaining the leader process at low air pressures at
high altitude. The understanding of the streamer-to-leader transition and the development of
numerical parametrizations of streamer zones of lightning leaders, especially under low air
pressure conditions, represent currently unsolved problems [36, 64]. The general scaling of the
Joule heating time scale in the streamer channels as a function of the air density can be deduced
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Figure 4. Simulated discharges illustrating the different known and postulated lightning types in
a normally electrified storm [65]. (a)–(f ) The contours and numbers with signs indicate negative
and positive charge regions and charge amounts (in C), each assumed to have a Gaussian spatial
distribution. A partially analogous set of discharges occurs or would be predicted to occur in storms
having inverted electrical structures (see figure S5 in [65, Supplementary Information]). Reprinted
from [65] by permission from Nature Geoscience.

from similarity analysis to be inversely proportional to the square of air density [36, 144, 145].
Therefore, it is expected that the heating processes and resulting streamer-to-leader transition
should be delayed with the reduction in air pressure and it should be possible to define a set
of conditions (i.e. altitude range, reduced electric field E/N , etc) for which the transition
becomes impossible. The appearance of some BJs and GJs (see figure 2, figure 1 in [23] and
figure 10 in [81]) is suggestive of a transition from hot lightning channels to a cold streamer
dominated region at higher altitudes. In terms of negative leader phenomenology discussed in
section 2, figure 2(c) showing moment of attachment of GJ to the lower ionospheric boundary
can be interpreted as the ‘final jump stage’, when the leader streamer zone makes contact
with the opposite electrode [56, p 212]. This stage may also have some resemblance to the
negative corona flash stage of negative leader development discussed in section 2. The range of
observed speeds during the final jump, 5 × 104 m s−1 to 106 m s−1 [56, p 212], is similar to the
range of speeds, from 5 × 104 m s−1 to more than 2 × 106 m s−1, reported in [16]. The bright
persistent channel below ∼40 km altitude in panels (e) through (i) in figure 2, designated as a
trailing jet in [17], can be interpreted as an attempt of the negative leader to form a next step,
which has not succeeded (possibly due to a fast dielectric relaxation response of a conducting
atmosphere or a lengthening of the heating time scales at low air pressures). As discussed
above, at least 100 times better time resolution is required to resolve many missing details of
the jet dynamics in figure 2.

Whether BJs have long-lived by-products leading to long-term consequences of their
occurrence was questioned soon after their discovery [146, 147]. Chemical transformations
in the ozone layer due to BJs have been numerically simulated [148], where perturbations of
nitric oxide and ozone content due to a single BJ formed by an attachment-controlled ionizing
wave were considered. Results show local perturbations of nitric oxide content of 10% and
ozone content 0.5% at 30 km altitude [148].

Lehtinen and Inan [149] utilized a model of stratospheric/lower ionospheric chemistry to
demonstrate that substantial ionization associated with GJs may persist more than 10 min. The
results indicate an initial rapid (few seconds) recovery due to electron attachment, followed by
a long enduring recovery (>10 min) determined by the time scale of mutual neutralization of
negative and positive ions [149]. Such recovery signatures may be observable in perturbations
of subionospherically propagating VLF (3–30 kHz) long-range communication signals [149].

Recent observations and theoretical analysis showing that BJs and GJs have small scale
streamer structure allow us to make some additional comments as to their expected chemical
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effects. The non-thermal streamer plasma at atmospheric pressure with several electron-volt
electrons embedded in ambient temperature air is of practical interest as it provides a
good source of highly reactive species used for chemical treatment of hazardous and toxic
pollutants [150]. Due to the ability of streamer filaments to produce high electric fields
around their tips, the non-thermal streamer plasmas easily generate electrons with energies
sufficient to dissociate oxygen molecules. The dissociation initiates a chain of reactions
leading to the formation of ozone in air, the process which has been used for industrial ozone
production for over a century [150]. Due to the dramatic reduction in the air pressure at high
altitudes above thunderstorms, the same streamers, which develop on time scales of several
nanoseconds and possessing diameters of a fraction of millimeter at ground level, appear as
many kilometer long channels with diameters of the order of hundred meters and formation
time of several milliseconds, easily observable above thunderclouds by low-light imaging
systems deployed hundreds of kilometers away [10, 16, 17]. These streamers preserve their
ability to produce highly active chemical species [151–154] and can effectively treat thousands
of cubic kilometers of atmosphere in a single event. The branching observed in atmospheric
TLE discharges is also known, but not the fully understood property of streamers at ground
pressure, which is currently recognized as an important parameter control which is desirable
for effective chemical treatment of large gas volumes [155].

Although perturbations of atmospheric chemistry are possible in localized volumes
affected by BJs and GJs, their effects on regional and global scales have not yet been quantified.
Rodger et al [156] recently reported a study making use of night time observations of NO2 by
the GOMOS instrument to test whether TLEs are producing significant NOx enhancements
in the middle atmosphere on a regional scale. Comparing regional variations of NO2 with
2–3 order of magnitude variations in lightning activity these authors show that within the
detection levels of the instrument there is no significant impact of TLEs, including BJs and
GJs, upon NOx levels in the stratosphere and mesosphere (20–70 km) [156]. This particular
study therefore shows that variation in NOx due to TLEs does not appear to be significant on
regional scales or beyond.

Additional consequences of BJs and GJs may include effects on the global electric circuit,
in which the Earth-ionosphere potential difference of ∼300 kV is predominantly driven by
upward currents from thunderstorms [16, 157–161]. Video recordings showing jet events
extending from the cloud tops to the ionosphere [16, 17] may indicate that these events play
a larger role in the global electric circuit than previously expected. Krehbiel et al [65] note
that positive BJs contribute to the charging of the global electric circuit, while negative GJs
discharge the circuit. Knowing how frequently these events occur will help to understand their
contribution to the global electric circuit.

5. Conclusions

We have presented a review of the phenomenology and physical mechanisms of BSs,
BJs and GJs. An attempt was made to summarize the available experimental data on
morphological features of jet events and interpretation of these features in the context of
known phenomenology of leader and streamer discharges documented in atmospheric pressure
experiments. We have also reviewed some of the modeling efforts related to BSs, BJs and GJs.
Finally, we identified a need for high speed imaging of the jet phenomena and outlined some
presently unsolved problems in the theory of BSs, BJs and GJs, including the definite need
for better understanding of the streamer-to-leader transition and the development of numerical
parametrizations of streamer zones of lightning leaders of different polarities under low air
pressure conditions.
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