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ABSTRACT

The set of orthogonal eigen-vectors built via principal component analysis (PCA), while very effective for com-
pression, can often lead to loss of crucial discriminative information in signals. In this work, we build a new
basis set using synthetic aperture radar (SAR) target images via non-negative matrix approximations (NNMAs).
Owing to the underlying physics, we expect a non-negative basis and an accompanying non-negative coefficient
set to be a more accurate generative model for SAR profiles than the PCA basis which lacks direct physi-
cal interpretation. The NNMA basis vectors while not orthogonal capture discriminative local components of
SAR target images. We test the merits of the NNMA basis representation for the problem of automatic target
recognition using SAR images with a support vector machine (SVM) classifier. Experiments on the benchmark
MSTAR database reveal the merits of basis selection techniques that can model imaging physics more closely
and can capture inter-class variability, in addition to identifying a trade-off between classification performance
and availability of training.
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1. INTRODUCTION

The problem of identifying target images from sensed imagery, popularly known as automatic target recognition
(ATR), has attracted the attention of the research community for over three decades now.1 The target images
can typically be acquired from a rich variety of sensing sources like synthetic aperture radar (SAR), inverse SAR,
hyperspectral imaging (HSI), and forward-looking infra-red (FLIR).

In a supervised learning approach to ATR, a small set of labeled representative features extracted from each
target class is first used to train a classifier (or decision engine) to minimize classification error. It is well known
that suitably chosen features with reduced dimensionality can often encapsulate most of the information in an
image, and this is particularly useful for efficient computations in many real-time applications. Accordingly,
the process of feature extraction may be modeled as a projection to a lower dimensional feature space which is
represented by a collection of basis vectors. Mathematically, the feature xxx ∈ Rn corresponding to a target image
yyy ∈ Rm, (n < m), is obtained by solving the following optimization problem:

xxx = arg min
x̂̂x̂x
‖yyy −AAAx̂̂x̂x‖2, (1)

where the projection matrix AAA ∈ Rm×n is a collection of n basis vectors, each in Rm.

In literature, principal component analysis (PCA) is perhaps one of the most widely used feature extraction
techniques for image classification tasks. In ATR, PCA-based approaches have led to the use of eigen-templates2

as features. Other popular feature extraction techniques in ATR include geometric descriptors such as robust
edges and corners,3 projection to and selective retention of transform domain coefficients, particularly wavelets,4

and estimation-theoretic templates.5 In parallel, a variety of decision engines have been proposed and some
of the more recent choices have been inspired by advances in machine learning theory, like neural networks,6

support vector machines (SVMs)7 and boosting.8 Of active related research interest is the problem of fusing
information for robust classification, leading to the development of ensemble classifiers,9 meta-classifiers10 and
principled strategies for feature fusion.11



Although the eventual class decision is made by the decision engine, the discriminative capability of the
features can significantly influence the success of classification. In this paper, we compare the effect of different
basis representations, i.e. the projection matrices AAA in (1), on ATR classification performance. In particular, we
use training SAR images that span the various target classes and build a new basis set via a recent linear algebra
advance known as non-negative matrix approximations (NNMAs), which involves an explicit non-negativity
constraint. The fundamental insight is that owing to underlying physics, we expect non-negative basis and an
accompanying non-negative coefficient set to be a more accurate generative model for SAR target images than
the PCA basis which lacks direct physical interpretation. The NNMA basis vectors while not orthogonal capture
discriminative local components of SAR images, thus offering much greater discriminative capability. Features
for classification are extracted by projecting the SAR target images onto the NNMA basis sub-space. The feature
vectors are then fed into a support vector machine classifier which performs the eventual class assignment. We
evaluate the different basis representation schemes on the benchmark MSTAR database.12 Experiments reveal
the benefits of using basis representations that model the imaging physics better, when compared to the PCA-
based approach2 as a baseline.

2. BACKGROUND

In this section, we briefly review the key aspects of principal component analysis and non-negative matrix
approximations.

2.1 Principal Component Analysis

Principal component analysis13 is primarily used as a tool to build a reduced dimension basis from a set of
statistically representative training data samples. A simplistic yet often powerful assumption to understand
any data set that captures a physical phenomenon is that there exists a collection of basis vectors whose linear
combinations can model any observation of the particular phenomenon. Often, the high dimensionality of data
can mask the underlying, possibly simpler models that can explain the phenomena represented by the data.
The goal of PCA is to identify a new basis representation, in terms of a linear combination of the original basis
vectors, which leads to more meaningful interpretation of the data.

The PCA technique is closely related to the more general technique of singular value decomposition (SVD).
Consider a collection of T vectors, each in Rm. Let XXX be the m× T matrix consisting of the T vectors stacked
as columns. The singular value decomposition of XXX gives:

XXX = UUUΛΛΛVVV t, (2)

where UUU = [uuu1 uuu2 · · · uuum] ∈ Rm×m is the matrix of eigenvectors of XXXXXXt, VVV = [vvv1 v2 · · · vvvT ] ∈ RT×T is
the matrix of eigenvectors of XXXtXXX and the diagonal entries of ΛΛΛ ∈ Rm×T are the singular values arranged in
descending order. The r most relevant singular vectors can be chosen to reconstruct an r-rank approximation
of the data matrix. An important property of SVD is that, in fact, this approximation is the optimal r-rank
approximation toXXX in the sense of minimum Frobenius norm reconstruction error. This property naturally leads
to a method of achieving dimensionality reduction by identifying the r < n most significant singular vectors (or,
equivalently principal components) onto which any new vector may be projected. These principal components
(i.e. the r singular vectors) are necessarily orthogonal by design.

Eigen-templates2 based on the SVD technique have been employed for feature extraction in ATR with consid-
erable success. The first r columns of UUU are chosen as the projection matrix AAA, and feature vectors are obtained
by projecting the target images onto the r-dimensional space spanned by AAA. This set of orthogonal eigen-vectors
while very effective for compression can often lead to loss of discriminative information in signals which could
be useful for distinguishing between signal classes.

2.2 Non-negative Matrix Approximations

Non-negative matrix factorization (NMF) is a dimensionality reduction technique proposed by Lee et al.14 Unlike
SVD, NMF performs matrix factorizations (more accurately, approximations) under an element-wise nonnega-
tivity constraint on the factor matrices. The success of NMFs stems from the fact that for many physical stimuli,



including image pixel intensities/colors, the underlying generative model is indeed a linear combination of basis
functions with element-wise non-negative components. Orthogonality as in SVD is therefore often unnatural -
unless compression/accurate reconstruction from a small number of coefficients is the ultimate goal. In ATR,
the goal is to achieve high classification rates, which is very distinct from compression/reconstruction.

The goal of NMF is to factorize the data matrix XXX into two non-negative matrices:

XXX ≈WWWHHH, (3)

where WWW ∈ Rm×r and HHH ∈ Rr×T . Each column xxx of XXX can be written as xxx ≈WWWhhh, where hhh is the corresponding
column of HHH. As a result, we obtain an r-dimensional feature representation of each target image (r is typically
chosen to be smaller than m and T ). In contrast to the SVD technique discussed in Section 2.1, the projection
matrix AAA is now chosen to be the matrix WWW , which can be interpreted as a (dimensionality-reducing) basis for
feature extraction.

For a collection of training target vectors XXX, WWW and HHH can be obtained by solving the following optimization
problem:

minimize ‖XXX −WWWHHH‖2 w.r.t. WWW and HHH, subject to WWW,HHH ≥ 0, (4)

which can be solved via the Euclidean update rule. An alternate formulation of the NMF problem is considered
in this paper:

minimize D(XXX||WWWHHH) w.r.t. WWW and HHH, subject to WWW,HHH ≥ 0, (5)

where the divergence term is defined as:

D(PPP ||QQQ) =
∑
i,j

(
PPP ij log

PPP ij

QQQij
−PPP ij +QQQij

)
, (6)

and subscripts represent the element indices. Corresponding to this formulation, we use an iterative divergence
update rule to solve the problem. Once WWW is obtained using the training target vectors, the feature vector
corresponding to any new target vector yyy is obtained by solving the following optimization problem:

hhh = min
h
‖yyy −WWWhhh‖2, subject to hhh ≥ 0, (7)

which is the well-known non-negative least squares problem.

3. PROPOSED CLASSIFICATION FRAMEWORK

The overall classification framework is illustrated in Fig. 1. Target classification is a two-stage process. First,
in the training stage, lexicographically-ordered versions of training images from all classes are collected in a
data matrix XXX ∈ Rm×T . Features are generated from this set of labeled training vectors and are used to train
the SVM-based classifier. The aspect of feature extraction is tied to the choice of projection matrix. For our
experiments, we obtain the projection matrix AAA in two different ways:

1. Using the r-rank orthogonal projection UUU from the SVD procedure (see Section 2.1),

2. Using the non-negative basis matrix WWW obtained from NMFs (see Section 2.2).

For each choice of projection, features are extracted from target vectors by solving (1).

Next, in the test stage, features from new test images are assigned target class labels by the SVM. So far, we
have considered the feature extraction process in detail. We now briefly introduce the SVM classifier.



Figure 1. Schematic of the overall classification framework.

3.1 Support Vector Machines

SVM15 is a popular machine learning technique to classify data, which determines the margin maximizing
hyperplane in a feature space. The decision function of a linear SVM classifier (for a two-class problem) may be
written as:

f(xxx) =

N∑
i=1

αiyi(sss
T
i xxx) + b, (8)

where xxx ∈ Rn is the feature vector to be classified, the sssi are support vectors, N is the number of support
vectors, and yi ∈ {−1, 1} are the binary classifier decisions. Parameters αi and b are determined by solving
the ensuing constrained optimization problem for margin maximization. A binary classification decision for
xxx is made depending on whether f(xxx) > 0 or otherwise. The linear SVM assumes that the feature data is
linearly separable, i.e. there exists an optimal hyperplane that separates the two classes. This technique can
be extended to learn more elaborate non-linear separators between classes via the kernel trick, by considering
kernels which map features into a higher-dimensional space where they are more likely to be linearly separable.
The corresponding decision function for a kernel-based classifier is:

f(xxx) =

N∑
i=1

αiyiK(sssi,xxx) + b, (9)

where K(xxxi,xxxj) = 〈φ(xxxi), φ(xxxj)〉 and φ represents a nonlinear mapping of target data. For multi-class classifiers,
the one-versus-all approach is employed to decide the target category. The use of SVMs in ATR problems has
proliferated and it has been widely accepted to be representative of state-of-the art classifiers.

3.2 Feature extraction: NNMA vs. PCA

The projection AAA captures some information about the overall distribution of target images from all classes.
In PCA, the goal is to capture this information by identifying the principal components from the eigenvectors
of the sample covariance matrix. In NNMA, the idea is to factorize the data matrix into basis and coefficient
matrices, both of which have non-negative elements. In both these cases, it is also well known that low-rank
approximations can represent the original data reasonably well, leading to dimensionality reduction that can in
turn reduce computational complexity. The key assumption in this process of projection to a suitable basis is
that a handful of principal components or the low-rank NNMAs are sufficient to capture most of the variations
between the different target classes. The first few principal components will be useful for classification when
inter-class variations are more dominant than intra-class variations.

Our choice of NNMAs for feature extraction is motivated by the physics underlying the generative model for
SAR target image capture. The intensity value represented by each SAR image pixel is non-negative. However,
there is no empirical justification for the choice of an orthogonal set of basis vectors to represent the feature
space. This argument motivates the claim that a non-negative projection matrix (along with the corresponding
nonnegative feature vectors) is a more reasonable representation of the feature space compared to a representation
based on orthogonal PCA (or equivalently, SVD) feature vectors. The NNMA basis vectors while not orthogonal
capture discriminative local components of SAR images, thus offering much greater discriminative capability.
The results in the next section validate our claim.



Table 1. Confusion matrix for shared basis using PCA.

Class BMP-2 BTR-70 T-72 ZIL131 D7
BMP-2 0.84 0.06 0.04 0.02 0.04
BTR-70 0.05 0.87 0.03 0.02 0.03

T-72 0.03 0.07 0.83 0.03 0.04
ZIL131 0.05 0.03 0.02 0.84 0.06

D7 0.06 0.02 0.04 0.06 0.82

Table 2. Confusion matrix for shared basis using NNMA.

Class BMP-2 BTR-70 T-72 ZIL131 D7
BMP-2 0.86 0.05 0.02 0.05 0.02
BTR-70 0.07 0.88 0.04 0.01 0.0

T-72 0.03 0.04 0.86 0.02 0.05
ZIL131 0.01 0.06 0.05 0.87 0.01

D7 0.04 0.02 0.06 0.04 0.84

4. EXPERIMENTS AND RESULTS

Experiments are performed on a set of benchmark SAR images obtained from the Moving and Stationary Target
Acquisition and Recognition (MSTAR) program,12 which has released a large set of SAR images in the public
domain. Five target classes from the database are used: T-72 tanks, BMP-2 infantry fighting vehicles, BTR-70
armored personnel carriers, ZIL trucks and D7 tractors. The T-72 and BMP-2 classes have three different serial
number variants each, while the other three classes have a single serial number variant each. For training, 150
images are selected from each class, while a total of 1913 images are used for testing. Training and test images are
acquired with 17◦ and 15◦ depression angle respectively. Minimal pre-processing of data in the form of speckle
denoising and target centering is performed prior to classification, similar to other algorithms in literature.16

The size of the target chip - which is the processed image input to the basis selection scheme - is normalized to
64× 64, i.e. the vectorized target image lies in R4096.

The classification performance is represented using confusion matrices. Each row of the confusion matrix
indicates the true identity of target images, while each column is the predicted target class label as a result of
our proposed scheme. Tables 1-2 show the confusion matrices. We select the 750 largest singular vectors to
build AAA in case of PCA, and choose a rank-r approximation using NNMA where r = 750. We observe that using
NNMAs improves classification performance over the baseline PCA, pointing to the benefits of selecting the basis
based on characteristics of the image generative model.

5. CONCLUSION

Orthogonal feature space representations based on principal component analysis have been used for feature
extraction with considerable success in SAR automatic target recognition. In this paper, we propose a novel
feature space representation based on non-negative matrix approximations, which is intuitively motivated by the
underlying imaging physics. In particular, we use the training SAR target data to obtain a projection matrix
and feature vectors with strictly non-negative elements, by solving a constrained optimization problem. This
choice of non-negative projection matrix simultaneously achieves dimensionality reduction as well as captures
the key inter-class variations, leading to better classification performance than PCA-based classifiers. As part of
future work, we will investigate the design of basis matrices that can capture inter-class variability better while
offering better robustness to choice of training.
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