channel ← a mathematical model for communication & storage systems

Input alphabet ← 𝒇
Output alphabet ← 𝝋

\[X \in 𝒇^n \]
\[Y \in 𝝋^n \]

Two types of channels
→ probabilistic
→ adversarial → later...

probabilistic channel

\[P(\mathcal{Y} | \mathcal{X}) \rightarrow \text{probability distribution of output, given input.} \]

Example: Binary Symmetric Channel

\[f = \{0,1\} \quad \text{(BSC)} \]
\[𝜏 = \{0,1\} \]

\[m = n \]
\[P(\mathcal{Y} | \mathcal{X}) = \left[\frac{\gamma_i}{\tau_i} \right] \]

\[= \prod_{i=1}^{n} P(\mathcal{Y} | \mathcal{X}) \]

\[P(\mathcal{Y} | \mathcal{X}) = \begin{cases} 1 & \text{if } y = x \\ 0 & \text{otherwise} \end{cases} \]

For instance, \(y \neq x \)

\[P(\mathcal{Y} = 00 | \mathcal{X} = 00) = (1-p)x(1-h) \]
\[= (1-p)^2 \]

\[P(\mathcal{Y} = 01 | \mathcal{X} = 00) = (1-p) 0 \]

Alternate view

\[Y = X + Z \]

\[Z \rightarrow \text{i.i.d components} \]

\[P(z_1, p) \]

\[\rightarrow (\mathcal{Z}) \]

\[P(z_1, 1) = p \]

\[P(z_1, 0) = 1-p \]

i.i.d. all operations are modulo 2

Independent assumption

\[Y_i \text{ is independent of } \mathcal{X} \]

Given \(X \)

Memoryless channels
given \(x_t \)

\[
P_T(y_t = y_c | x_t = x_i, x_2 = x_2, \ldots) = P(y_t = y_c | x_t = x_i) = -P_{y|x}(y_t | x_t)
\]

Binary erasure channel (BEC)

\(F = \mathbb{Z}/2, \quad Q = \{0, 1\} \)

\[
P_{y|x} = \prod_{i=1}^{n} P_{y|x_i}(y_i | x_i)
\]

\[
P_{y|x}(y | x) = \begin{cases} 1-b & \text{if } y \neq x \\ b & \text{if } y = x \\ 0 & \text{if } y = \text{erasure} \end{cases}
\]

\![\text{Diagram of Erasure correcting code}]

\(\tilde{u} \in U \)

\(|U| = M \)

An \((n, M)\) error correcting code contains the following:

- A one-to-one mapping from \(U \) to \(F^n \), called encoder
- A one-to-one mapping from \(F^n \) to \(U \) (or from \(F^n \) to \(F^n \)), called decoder.

Usually, we assume \(m = n \)

\[1/13/2014\]

Formally, an \((n, M)\) code contains a set

\(C \subset F^n \) where \(|C| = M\)

\(\text{encoder mapping from } U \rightarrow C \text{ is implicit} \)
For a given channel, and code C, a decoder is a mapping from \mathbb{F}^m to C

$$D(x) = x_0,$$ where $x_0 \in C$

Decoding function

Hamming distance

- imposes some geometry on \mathbb{F}^n, \mathbb{F}^m, etc.

Given a set F and an integer n, the Hamming distance between strings $x, y \in F^n$

$$d_H(x, y) = \left\lfloor \frac{1}{2} \left| x \cdot y \right| \right\rfloor$$

where $x = (x_1, \ldots, x_n)$

$$y = (y_1, \ldots, y_n)$$

Example

$$d_H(0010, 0010) = 2.$$

Hamming weight

For any set F with a reference element \varnothing

The Hamming weight of a vector $x \in F^n$ is

$$d_H(x, \varnothing)$$

Rate & min. distance of a code

Rate of a (n, M) code C over alphabet F

$$R = \frac{\log M}{n}$$

$$M = |C| \leq |F|^n \Rightarrow \log M \leq n$$

$$\Rightarrow R \leq 1$$

Min. distance of a code C is

$$d_{\min} = \min_{x, y \in C} d_H(x, y)$$

(n, m, d) code has block length n and min. distance d.

Examples
Repetition code over \(F = \{ 0, 1 \} \)

\[M = 2 \]

arbitrary \(n \).

\(C = \{ 0000 \ldots 0, 1111 \ldots 1 \} \)

Rate \(= \frac{1}{n} \)

\[\to \frac{n}{n} \text{ as } n \to \infty \]

Min. distance \(= n \)

Single parity code over \(F = \{ 0, 1 \} \)

\(M = 2^{n-1} \)

arbitrary \(n \).

\(U = \{ 011 \ldots 1 \}^{n-1} \)

\(\mathcal{W} = \{ u_1, u_2, \ldots, u_n \} \to (u_1, u_2, \ldots, u_n, u_1 \oplus u_2 \oplus \ldots \oplus u_n) \)

Rate \(= \frac{n-1}{n} = 1 - \frac{1}{n} \)

\[\to 1 \text{ as } n \to \infty \]

Example

\(n = 3 \).

\(C = \{ 000, 011, 101, 110 \} \)

Min. distance \(= 2 \)

In fact, in general, for a single parity check code,

\(d_{\text{min}} = 2 \) [does not depend on \(n \)]

\(00 \ldots 01 \) \{ does not depend \}

\(\frac{1}{n} \)

distances \(= 2 \)

Note that for a single parity code

\(x \in C \) if and only if

\[x_1 + x_2 + \ldots + x_n \equiv 0 \text{ (mod n) } \]

called a parity check equation

Decoder for probabilistic channels

For a channel \(P(y|x) \), the probability of error of a codeword \(x \in C \).

\[P_{\text{err}}(x_0) = P(D(x_0) \neq x_0 | x = x_0) \]

1) Maximal prob of error

\[P_{\text{err}}(C) = \max_{x_0 \in C} P_{\text{err}}(x_0) \]

2) Average prob of error

\[\mathbb{E} P_{\text{err}}(x) \]
\[\text{Perr}(c) = \frac{1}{M} \sum_{c} \text{Perr}(c) \]

MAP decoder

\[\min \text{ pr of error given } P_x(z) \]

\[D(c) = \arg \max_{c \in C} P_r(y = z^2 / P_x(z)) \]

ML Decoder

\[\min \text{ pr of error } \]

\[D(c^2) = \arg \max_{c \in C} P_r(y = z^2 / P_x(z)) \]

BSC(p)

It can be shown that:

\[D(c) = \arg \min_{c \in C} d_H(c, z^2) \]

\[\Rightarrow \text{ML decoder.} \]

\[D(c^2) \] is the closest codeword.

Example

\(b = 3, \) repetition code:

\[c = \{000, 111\} \]

\[\rightarrow \]

\[D(y) = \]

\[000 \rightarrow 000, \]

\[001 \rightarrow 0000, \]

\[010 \rightarrow 000, \]

\[011 \rightarrow 111, \]

\[100 \rightarrow 000, \]

\[101 \rightarrow 111, \]

\[110 \rightarrow 111, \]

\[111 \rightarrow 111, \]

\[\text{Perr}(000) = P(y = 110 \mid y = 110) \frac{1}{y^2 + y} \]

\[\text{Perr}(000) = 3p^3(1-p) + 3p^3 \]

\[\text{Perr}(000) \leq \frac{1}{16/2014} \]

\[\text{can be easily verified that } \]

\[\text{Perr}(000) \leq p \]
As \(n \to \infty \), \(P_{\text{err}} \to 0 \) for repetition code

given a number \(\epsilon \), what is the highest rate \(R \), s.t. it is a \((n,M)\)-code of rate \(R \), with \(P_{\text{err}} \leq \epsilon \).

Shannon's results for BSC(\(p \))

1) If \(R < 1 - H(p) \) then (achievable)

 - for every \(\epsilon > 0 \), there exists an \((n,M)\)-code of rate \(R \) s.t.
 - \(P_{\text{err}} \leq \epsilon \), for sufficiently large \(n \).

2) If \(R > 1 - H(p) \), then (infeasible)

 - as \(n \to \infty \), \(P_{\text{err}} \to 1 \)
 - for every sequence of \((n,M)\) codes
 - with rate \(R \).

Remarks

1) Shannon's results are non-constructive

 In this course, we will learn how to construct codes

2) Shannon's approach ignored computational complexity,

 E.g. complexity of ML decoding technique BSC

 \(\sim \) order of \(M = |F|^n R \).

 We will learn low-complexity decoding

3) \(H(x) \) is called the binary entropy function.

 ![Entropy function graph]

 Interpretation of \(H(x) \)
For $z \in \{0,1\}^n$, let $S(z, t) = \{ \tilde{z} : d_n(\tilde{z}, z) = t \}$

\[|S(z, t)| = \binom{n}{t} \]

As $n \to \infty$

\[|S(z, n^n)| \sim 2^n \]

more precisely

\[|S(z, n^n)| = 2^{n H(t) + o(n)} \]

sublinear

\[\lim_{n \to \infty} \frac{o(n)}{n} = 0 \]

Adversarial channels

For every z, define a set

\[\Phi_z \subseteq \Phi^n \]

set of possible output strings

given input was z

Example

t - error channel

Define

\[B(z, r) = \{ \tilde{z} \in \Phi^n : d_n(\tilde{z}, z) \leq r \} \]

ball of radius r centered at z

k - error channel has

\[\Phi_z^k = B(z, k) \]