

Channel \rightarrow a mathematical model for communication
Input alphabet $\rightarrow F$ c. Storage syterss

Output alphabet $\rightarrow \Phi$

$$
\begin{aligned}
& \vec{x} \in F^{n} \\
& \vec{y} \in \Phi^{m}
\end{aligned}
$$

Two types of channels
\rightarrow probabilistic
\rightarrow Adversarial \rightarrow later
probabilistic channd
$P_{\vec{y} / \vec{x}}(\vec{y} / \vec{x}) \rightarrow$ probability distribution of output, gwen input.
Example \rightarrow BINARY SYMMETRIC CHANNEL

$$
\begin{align*}
& F=\{0,1\} \tag{BSC}\\
& \Phi=\{0,1\} \\
& m=n
\end{align*}
$$

$$
\begin{array}{ll}
m=n . \\
\text { upper case } \\
\vec{P} & \mid \vec{x}(\vec{y} \mid \vec{x})
\end{array} \quad\left[\begin{array}{l}
\vec{y}=\left(y_{1}, y_{2} \ldots y_{n}\right) \\
\vec{x}=\left(x_{1}, x_{2}, \ldots x_{n}\right)
\end{array}\right]
$$

$$
=\prod_{i=1}^{n!} p_{y / x}\left(y_{i} \mid x_{i}\right)
$$

For instance, if $n=2$ probability.

$$
\begin{aligned}
P_{\vec{y} \mid \vec{x}}(100 / 00) & =(1-b) \times(1-b) \\
& =(1-p)^{2} \\
P_{\vec{y} \mid \vec{x}}(01 / 00) & =(1-b) b
\end{aligned}
$$

Independence assumption
Y_{i} is independent of

$$
\left\{x_{j} \because j \neq i\right\}
$$

Memory less channels

Alternate view

$$
\begin{aligned}
& \vec{y}=\vec{Y}+\vec{z} \\
& n_{x 1}
\end{aligned}
$$

$\vec{z} \rightarrow$ i.1.d components
Ber. (p)

$$
\vec{z} \rightarrow\left(\begin{array}{c}
z_{1} \\
\vdots \\
z_{n}
\end{array}\right) \rightarrow p\left(z_{i}=1\right)=p
$$

1.e aM operations are modulo 2

$$
\begin{aligned}
& \left.\frac{g \text { ween } X_{i}}{\left.\operatorname{Pr}_{\underline{\gamma}\left(Y_{i}\right.}=y_{i} / x_{1}=x_{1}, x_{2}=x_{2} \cdots\right)} \begin{array}{c}
x_{n}=x_{n}
\end{array}\right) \\
& =P_{r}\left(Y_{i}=y_{i} \mid x_{i}=x_{i}\right) \\
& =-p_{y / x}\left(y_{i} / x_{i}\right) \\
& \begin{array}{l}
\text { Binary erasure channel.(BEC) } \\
F=\{0,1\}, \phi=\{0,1, \epsilon\} \text { erasure }
\end{array} \\
& P_{\vec{y} / \vec{x}}=\prod_{i=1}^{n} P_{y / x}\left(y_{i} / x_{i}\right) \\
& p_{y \mid x}(y \mid x)=\left\{\begin{array}{cl}
1-p & \text { if } y=x \\
p & \text { if } y=\epsilon \\
0 & \text { if } y=\operatorname{Not}(x)
\end{array}\right\} \\
& 0 \underbrace{1-p}_{\text {pace }} 0 \\
& \overbrace{1-b}^{p} \\
& \text { Error correcting code } \\
& |U|=M \\
& \text { An }(n, M) \text { error correcting code } \\
& \text { contaths the following } \\
& \{1, \Gamma, M\} \rightarrow A \text { one-to-one mapping from } \\
& U \text { to } F^{\frac{n}{1}} \text {, called encoder } \\
& \text { called slecoder } \\
& \text { usually, we assume } m=n \text {. } \\
& \text { 1/13/2016 }
\end{aligned}
$$

Formally, an

$$
\begin{gathered}
(n, M) \text { code contains a set } \\
C C F^{n} \text { where }|C|=M \\
{[\text { Encoder mapping from }} \\
v \rightarrow C \text { is implicit }]
\end{gathered}
$$

For a given channel, and a code C,
a decoder is a mapping from
Φ^{m} to C

$$
D(\vec{y})=\vec{x}_{0} \text {, where } \vec{x}_{0} \in C
$$

Decoding function
Hamming distance
\rightarrow imposes some geometry on

$$
F^{n}, \Phi^{m} e+c \text {. }
$$

Gwen a set F, and a number n,
The Hamming distance between strings

$$
\vec{x}, \vec{y} \in F^{n} \text { is }
$$

$$
d_{H}(\vec{x}, \vec{y})=\left|\left\{i, x_{i} \neq y_{i}\right\}\right|
$$

$$
F^{F^{n}}
$$

$$
d_{+1}(001(0), 0010)=2
$$

Hamming weight
For any set F with a reference element " O ",

the Hamming Weight of a
vector $\vec{x} \in F^{n}$ is

$$
d_{H}(\vec{x}, \overrightarrow{0})
$$

Properties
i) $d_{H}(\vec{x}, \vec{y}) \geq 0$
with equality of

$$
\vec{x}=\vec{y}
$$

2) $d_{H}(\vec{x}, \vec{y})=d_{+1}(\vec{y}, \vec{x})$
3) Triangle inequalts

$$
\begin{gathered}
d_{H}(\vec{x}, \vec{y})+d_{H}(\vec{y}, \vec{z}) \\
\geq d_{H}(\vec{x}, \vec{z}) \\
\vec{x}
\end{gathered}
$$

Rate \& Min. distance of a code
Rate of $a_{n}(n, M)$ code C over alphabet F

$$
\begin{aligned}
M=|C| & \leq \left\lvert\, F^{n} \Rightarrow \frac{\log _{\mid F 1} M}{n} \Rightarrow \log _{|F|} M \leq n\right. \\
& \Rightarrow R \leq 1
\end{aligned}
$$

Min distance of a code C iss

$$
d_{\min }=\min _{\substack{\vec{x} \neq \vec{y} \\ \\ \\ \vec{x}, y^{\prime} \in C}} d_{H}(\vec{x}, \vec{y})
$$

(n, m, d) code has block length n, and min. distance d.

Examples

$$
\begin{aligned}
& \text { Repetition code over } F=\{0,1\} \\
& M=2 \\
& \text { arbitrary } n \text {. } \\
& C=\{0000 . .0,11 . . \mid\} \\
& \text { Rate }=\frac{1}{n} \longrightarrow \\
& {[\rightarrow 0 \text { as } n \rightarrow \infty]} \\
& \text { Miss. distance }=n \text {. } \\
& \begin{array}{l}
\text { Single parity code over } f=\{0,1\} \\
H=2^{n-1} \text {, arbitrary } n .
\end{array} \\
& U=\{0,1\}^{n-1} \\
& \vec{u}=\left(u_{1}, u_{2}, \ldots u_{n-1}\right) \rightarrow\left(u_{1}, u_{2}, \ldots, u_{n-1}, u_{1}+u_{2}+\ldots \ldots u_{n-1}\right) \\
& \text { Rate }=\frac{n-1}{n}=1-\frac{1}{n} \text {. } \\
& \longrightarrow 1 \text { as } n \rightarrow \infty \\
& \frac{\text { Example }}{n=3} \\
& C=\{000,011,101,110\} \\
& \text { mim. } \text { distance }=2 \\
& \text { In fact, en general, for a } \\
& \text { single parity check cole, } \\
& d_{\text {mam }}^{\text {parity check }}=2\left[\begin{array}{c}
\text { does not depend } \\
\text { on } n
\end{array}\right] \\
& 00 . . .00^{d} \hat{d} \text { distance }=2 \\
& \frac{\text { Note Mat for a single parity case }}{\vec{x} \in C \quad Y \text { and only } \psi} \\
& x_{1}+x_{2} \ldots x_{n}=0 \longrightarrow \text { Called a parity check } \\
& \rightarrow \text { always kor. equation. }
\end{aligned}
$$

Decoder for probabilistic channels
For a channel $P_{\vec{y}|\vec{x}|}$, The
probability of error of a codeword $\vec{x}_{0} \in C$.
$P_{\text {err }}\left(\vec{x}_{0}\right)=P\left(\underset{\substack{\text { Decoder }}}{\left.\left.D(\vec{y}) \neq \vec{x}_{0}\right) \vec{x}=\vec{x}_{0}\right)}\right.$

1) Maximal prob. of error

$$
P_{\text {err }}(c)=\max _{\vec{x}_{0} \in C} P_{\text {err }}^{\prime}\left(\vec{x}_{0}\right)
$$

2) Average prob. of error

$$
\begin{aligned}
& \text { Average prob. perron } \\
& -1.1-1
\end{aligned} P_{\text {err }}\left(\vec{x}_{\mathrm{g}}\right)
$$

$$
\operatorname{Perr}(c)=\frac{1}{M} \sum_{\vec{x}_{0} \in c} P_{\text {err }}\left(\overrightarrow{x_{\partial}}\right)
$$

MAP decoder
Sketch of

Minumizes prob. of error for a
proof of optimality gwen $P_{\vec{x}}(\vec{x})$
\longrightarrow

$$
D(\vec{y})=\underset{\vec{x}_{0} \in C}{\arg \max } \operatorname{Pr}\left(\vec{x}=\vec{x}_{0} / \vec{y}=\vec{y}\right)
$$

$$
\begin{aligned}
p \text { (error) }= & \left.\sum_{\vec{y} \in \Phi^{n}} p_{r} \text { (errol } \mid \vec{y}=\vec{y}\right) p_{r}(\vec{y}=\vec{y}) \\
= & \sum_{\vec{y}} p_{r}(\vec{x} \neq D(\vec{y}) \mid \vec{y}=\vec{y}) \quad p_{\vec{y}}(\vec{y}) \\
= & \sum_{\vec{y}} p_{\vec{y}}(\vec{y})\left[1-p_{r}(\vec{x}=D(\vec{y}) \mid \vec{y}=\vec{y})\right] \\
= & \sum_{\vec{y}} p_{\vec{y}}(\vec{y})[1-\underbrace{}_{\vec{y} \mid \vec{y}}(D(\vec{y}) \mid \vec{y})]
\end{aligned}
$$

ML Decoder.
Mimunuges prob. of error
If $P_{\vec{x}}(\vec{x})$ is uniform.

$$
\begin{aligned}
& \left.D(\vec{y})=\frac{\arg \max }{P_{0}} \in C \right\rvert\, \vec{x} \\
& B S C(t)
\end{aligned}
$$

If can be shown that,

Note Mat for a BSC

$$
\text { if } p<\frac{1}{2}
$$

$$
D(\vec{y})=\underset{x_{0} \in c}{\arg \min } d_{H}\left(\vec{y}, \vec{x}_{0}\right)
$$

$$
\begin{aligned}
& \text { Note Mat for a BSC } \\
& P_{\vec{y} \mid \vec{x}}(\vec{y} \mid \vec{x})=p^{d_{H}(\vec{y}, \vec{x})}(1-p)^{n-d_{H}(\vec{y}, \vec{x})} \\
& \text { Also, f } p<\frac{1}{2}, \\
& a \quad n-a \quad b(1-p)^{n-b}
\end{aligned}
$$

$$
p^{a}(1-p)^{n-a}>b^{b}(1-b)^{n-b}
$$

$$
\text { ff } a<b
$$

Example.

$$
\left.\begin{array}{rl}
P_{\text {err }}(000)= & P(\vec{y}=101 \text { or } \vec{y}=110 \mid \vec{x}=000) \\
& 0 r \vec{y}=111
\end{array}\right)
$$

$$
P_{\text {err }}(000) \leq p
$$

camber easily verified that

longer
Repetition increases
reliability

$$
\begin{aligned}
& h=3 \text {, repetition code. } \\
& C=\{000,4\}\} \vec{y} \rightarrow D(\vec{y}) \longrightarrow \mathrm{ML} \text { decoder. } \\
& 000 \longrightarrow 000 \text {. } \\
& 001 \longrightarrow 000 \\
& \begin{array}{l}
010 \longrightarrow 000 \\
011 \longrightarrow 111
\end{array} \\
& \begin{array}{l}
100 \\
10.1 \longrightarrow
\end{array} 111 \\
& 110 \longrightarrow 11 \\
& \begin{array}{ll}
11 \\
0!
\end{array}
\end{aligned}
$$

As $n \rightarrow \infty$, Fer $\rightarrow 0$ for repetition code

$$
\begin{aligned}
& \text { Gwen a number } \in \text {, what is me highest } \\
& \text { rate } R \text {, } \quad \text {, }(n, M) \text { 'ode of rate } R \text {. } \\
& \text { with Yer } \leq G .
\end{aligned}
$$

Shannon's results for BSC(p)
(1) It $R<\sqrt[1-1+(p) \text { Hen } 1 H(x)=-x \log _{2} x]{-G-x) \log _{2}(1-x)}$

Achirvabilds an (n, M) code of rate R. st

$$
\operatorname{Per}<\in, \text { for sufficiently }
$$

$\frac{\text { ollowity large } n}{\text { 2) If } R>1-H(p) \text {, then. }}$

$$
\begin{aligned}
& \text { capacity of } \\
& \text { Bury symmetric } \\
& \text { channel BSC(b) }
\end{aligned}
$$

w converse. as $n \rightarrow \infty$, per every sequence of (n, M) codes with rate R.

Remartes

1) Shannon's results are non-constructure
In this course, we will learn how to
construct codes
2) Shannonis approach ignored computational

$$
\begin{aligned}
& \text { complesaty. } \\
& \text { Eg. comp. complexity of } M L \text { decoding } \\
& \text { technoppes } B S C \\
& \sim \text { order of } M=|F|^{n R .} \\
& \text { we will learn low-complesaty decoding }
\end{aligned}
$$

3) $\begin{aligned} H(x) \rightarrow & \text { called the binary entropy } \\ & \text { function. }\end{aligned}$

capacity (p)

$$
\text { Interpretation of } H(x)
$$

Feor $\vec{x} \in\{0,1\}^{n}$.

$$
\begin{aligned}
& \text { Feor } \vec{x} \in\{0,1\} \\
& \text { let } s(n, t)=\left\{\vec{y}: d_{1+}(\vec{y}, \vec{x})=t\right\} \\
& \text { sen,t) }=\left(\begin{array}{l}
n \\
t
\end{array}\right.
\end{aligned}
$$

as $n \rightarrow \infty$

$$
\begin{aligned}
& n \rightarrow \infty \\
& |s(n, p n)| \approx 2^{n H(p)} \text {. }
\end{aligned}
$$

more preccsely
car be shown $-\left|s\left(n, p_{n}\right)\right|=2$
sublunear
nourg.

$$
\text { sxiring } \lim _{n \rightarrow 0} \frac{0(n)}{n}=0
$$

Adversarial channels

$$
\vec{x} \rightarrow \mathbb{F}^{n} \rightarrow \vec{y} \in \Phi^{n} \text { channed }
$$

For every \vec{x}, defune a set

$$
\Phi_{\vec{x}} \subseteq \Phi^{n}
$$

$\Phi^{n} \longrightarrow$ set of possuble outputstrings ywer unput was \vec{x}

Example
t - error channel

Defune

$$
\begin{aligned}
& \text { Defune } \\
& B(\vec{x}, r)=\left\{\vec{z} \in F^{n}: \quad d_{H}(\vec{z}, \vec{x}) \leq r\right\}
\end{aligned}
$$

Ball of radius r contered at \vec{x}
t-error channel has

$$
\Phi_{\vec{x}}=B(\vec{x}, t)
$$

