Three polynomials

1) Syndrome polynomial
\[S(x) = \sum_{m=1}^{n-k} s_m x^{m-1} \]

2) Error locator polynomial
\[E(x) = \prod_{t \in T} \left(1 - \frac{1}{x - t}\right) \]
\[\text{deg}(S(x)) \leq 2^{\delta_1} \]
\[\text{deg}(E(x)) \leq 2^{\delta_1 - 1} \]

3) Error evaluator polynomial
\[\Gamma(x) = \sum_{j \in T} \epsilon_j x^{j-1} \]
\[\text{deg}(\Gamma(x)) \leq 2^{\delta_1 - 1} \]

Properties

- \text{gcd}(E(x), \Gamma(x)) = 1
- For \(j \in T \), \(\Gamma(x^{j-1}) = \epsilon_j x^{j-1} \)
- \(E(x) \Gamma(x) \equiv 1 \mod x^{n-k} \)
- \(E(x) \equiv \Gamma(x) \mod x^{n-k} \)

Key equation
\[E(x) S(x) \equiv \Gamma(x) \mod x^{n-k} \]

In principle, \(E(x) S(x) \) has monomial terms
- Degree of \(\epsilon_j x^{j-1} \) is \(j \)
- Degree of \(\epsilon_j x^{j-1} \) is \(j \)
- Degree of \(\epsilon_j x^{j-1} \) is \(j \)

\(\Gamma(x) \) has monomial terms of degree
- \(0, 1, 2, \ldots, 2^{\delta_1} - 1 \)

What is \(\beta_0, \beta_1, \ldots, \beta_{n-k} \)?

In general, \(\beta_0, \beta_1, \ldots, \beta_{n-k} \) is zero

But degree in term in \(E(x) S(x) - \Gamma(x) \) does not exist where \(m < n-k \)

\[\beta_m = 0 \]

\[\beta_{n-k} = 0 \]