1.1 Hamming Distance and Hamming Weight

Consider any set F. The Hamming distance $d_H(\vec{x}, \vec{y})$ between two vectors $\vec{x}, \vec{y} \in F^n$ is the number of positions where \vec{x}, \vec{y} differ. That is, denoting $\vec{x} = (x_1, x_2, \ldots, x_n)$, $\vec{y} = (y_1, y_2, \ldots, y_n)$, we can write

$$d_H(\vec{x}, \vec{y}) = |\{i : i \in \{1, 2, \ldots, n\}, x_i \neq y_i\}|.$$

The Hamming distance is a metric on $F^n \times F^n$ since it satisfies the following properties for any $\vec{x}, \vec{y}, \vec{z} \in F^n$:

1. Non-negativity, $d_H(\vec{x}, \vec{y}) \geq 0$,
2. Symmetry $d_H(\vec{x}, \vec{y}) \geq 0$,
3. $d_H(\vec{x}, \vec{y}) = 0 \Leftrightarrow \vec{x} = \vec{y}$,
4. Triangle Inequality $d_H(\vec{x}, \vec{y}) + d_H(\vec{y}, \vec{z}) \geq d_H(\vec{x}, \vec{z})$.

For a set F with a reference element 0, the Hamming weight of a vector \vec{x} is the number of non-zero elements in \vec{x}, i.e., it is $d_H(\vec{x}, (0, 0, \ldots, 0))$.

1.2 The t-error and t-erasure channels

A channel is a mathematical model of data communication and data storage. A channel consists of an input alphabet F, and output alphabet Φ, and a positive integer parameter n known as the length of the channel. The channel consists of an input $\vec{x} \in F^n$ and an output $\vec{y} \in \Phi^n$. An adversarial channel can be specified by subsets $\Phi_{\vec{x}} \subseteq \Phi^n$, $\vec{x} \in F^n$; the set $\Phi_{\vec{x}}$ specifies the set of possible output vectors, when the input to the channel is \vec{x}. The channel can be viewed as the action of an adversary who observes the input \vec{x} chooses an output \vec{y} arbitrarily from the set $\Phi_{\vec{x}}$.

1.2.1 t-error channel

For any vector $\vec{s} \in F^n$, let $B(\vec{s}, r)$, be a ball of radius r around \vec{s}. That is, $B(\vec{s}, r) = \{\vec{z} \in F^n : d_H(\vec{z}, \vec{s}) \leq r\}$. For instance, note that if $F = \{0, 1\}$ then the size of the ball is $|B(\vec{s}, r)| = \sum_{i=0}^{t} \binom{n}{i}$. A t-error channel over a finite alphabet F is specified as, $\Phi = F$ and $\Phi_{\vec{x}} = B(\vec{x}, t)$.

1-1
1.2.2 \(t \)-erasure channel

A \(t \)-erasure channel has \(F = \{0, 1\} \), and \(\Phi = \{0, 1, \epsilon\} \), where \(\epsilon \) is the erasure symbol. Let \(S \) be the set of sequences in \(\Phi^n \) with at most \(t \) erasures, i.e., \(S = \{(y_1, y_2, \ldots, y_n): |\{i: y_i = \epsilon\}| \leq t\} \).

\[
\Phi(x_1, x_2, \ldots, x_n) = \{(y_1, y_2, \ldots, y_n): y_i \in \{x_i, \epsilon\}, i = 1, 2, \ldots n \} \cap S.
\]

1.3 An \((n, k) \) error correcting code.

For a given channel, an \((n, k) \) and a decoder \(D \). 1.3 of generality, assume that \(x \) rate are called codewords. The \(n, k, d \) Consider an \((n, k, d) \) code with \(\Phi \nabla \) of the code is defined to be \(\frac{k}{n} \) and the minimum distance \(d_{\min} \) of the code is defined to be the Hamming distance between the two closest codewords. An error correcting code with minimum distance \(d \) is sometimes referred to as an \((n, k, d) \) code.

We say that an error correcting code \(C \) corrects errors over an adversarial channel if there exists a decoder \(D \) such that \(D(\hat{y}) = \hat{x} \) for all \(\hat{y} \in \Phi_\hat{x}, \hat{x} \in C \). Equivalently, an error correcting code \(C \) corrects errors if \(\hat{x}, \hat{x}' \in C \Rightarrow \Phi_{\hat{x}} \cap \Phi_{\hat{x}'} = \{\} \). For the \(t \)-error channel, we say that an error correcting code \(C \) detects errors if \(\hat{x}' \notin \Phi_{\hat{x}} \) for every \(\hat{x}, \hat{x}' \in C \).

Theorem 1.1 An \((n, k, d) \) code \(C \) corrects errors over a \(t \)-error channel if and only if \(d \geq 2t - 1 \).

Proof: Consider an \((n, k, d) \) code with \(d \geq 2t + 1 \). Let \(\hat{y} \in \Phi_{\hat{x}}, \hat{x} \in C \). For \(\hat{x}' \neq \hat{x}, \hat{x}' \in C \), we have from the triangle inequality,

\[
\begin{align*}
 d_H(\hat{x}, \hat{y}) + d_H(\hat{x}', \hat{y}) &\geq d_H(\hat{x}, \hat{x}') \\
 \Rightarrow d_H(\hat{x}, \hat{y}) &\geq d_H(\hat{x}, \hat{x}') - d_H(\hat{x}', \hat{y}) \\
 \Rightarrow d_H(\hat{x}', \hat{y}) &\geq 2t + 1 - t = t + 1 \\
 \Rightarrow \hat{y} &\notin \Phi_{\hat{x}'}
\end{align*}
\]

Therefore, the code corrects \(t \) errors.

Conversely, consider an \((n, k, d) \) code with \(d \leq 2t + 1 \). Then, there exist two codewords \(\bar{x} = (x_1, x_2, \ldots, x_n) \) an \(\bar{x}' = (x'_1, x'_2, \ldots, x'_n) \) such that \(d_H(\bar{x}, \bar{x}') \leq 2t \). Without loss of generality, assume that \(\bar{x}, \bar{x}' \) agree on the first \(n - 2t \) co-ordinates. Consider the vector \(\bar{y} = (y_1, y_2, \ldots, y_n) \) constructed as follows:

\[
y_i = \begin{cases}
 x_i & 1 \leq i \leq n - t \\
 x'_i & n - t + 1 \leq i \leq n
\end{cases}, i = 1, 2, \ldots, n
\]

Then \(d_H(\bar{y}, \bar{x}), d_H(\bar{y}, \bar{x}') \leq t \). Therefore, \(\bar{y} \in \Phi_{\bar{x}} \) and \(\bar{y} \in \Phi_{\bar{x}'} \). Since \(\Phi_{\bar{x}} \cap \Phi_{\bar{x}'} \neq \{\} \), the channel cannot correct \(t \) errors.

Theorem 1.2 An \((n, k, d) \) code \(C \) corrects errors over a \(t \)-erasure channel if and only if \(d \geq t - 1 \).

Proof:

Consider an \((n, k, d) \) code with \(d \geq t + 1 \). Let \(\bar{y} \in \Phi_{\bar{x}}, \bar{x} = (x_1, x_2, \ldots, x_n) \in C \). We argue that \(\bar{y} \notin \Phi_{\bar{x}} \) for any codeword \(\bar{x}' = (x'_1, x'_2, \ldots, x'_n) \neq \bar{x} \). Note that since \(\bar{x}' \in C \), we know \(d_H(\bar{x}, \bar{x}') \geq t + 1 \). Without loss of generality, assume that \(x_i \neq x'_i, i = 1, 2, \ldots, t + 1 \). Denoting \(\bar{y} = (y_1, y_2, \ldots, y_n) \), since \(\bar{y} \) has at most \(t \)
erasures, we know that there exists a co-ordinate \(c \in \{1, 2, \ldots, t + 1\} \) among the first \(t + 1 \) co-ordinates such that \(y_c \neq \epsilon \). Since \(\vec{y} \in \Phi_{\vec{x}}, y_c = x_c \). However, \(x_c \neq x'_c \). Therefore \(y_c \neq x'_c \) and therefore, \(\vec{y} \notin \Phi_{\vec{x'}} \).

Conversely, consider an \((n, k, d)\) code with \(d \leq t \). Then there exist two codewords \(\vec{x}, \vec{x}' \) that agrees upon at least \(n - t \) co-ordinates. Without loss of generality, assume that \(\vec{x}, \vec{x}' \) agree upon the first \(n - t \) co-ordinates. Then a sequence \(\vec{y} \in \Phi^n \) which agree with \(\vec{x}, \vec{x}' \) in the first \(n - t \) co-ordinates and has erasures in the last \(t \) co-ordinates lies in both \(\Phi_{\vec{x}} \) and \(\Phi_{\vec{x}'} \). Therefore the code cannot correct \(t \) erasures. \(\blacksquare \)

Theorem 1.3 An \((n, k, d)\) code \(C \) detects errors over a \(t \)-error channel if and only if \(d \geq t - 1 \).

Proof is an exercise.

1.4 Probabilistic Channel

A probabilistic channel with finite input alphabet \(F \) and finite output alphabet \(\Phi \) consists, for every \(\vec{x} \in F^n \), a probability measure \(\mathbb{P}_{Y|X}(\cdot|\vec{x}) \) on \(\Phi^n \). We consider memoryless channels, which have the form

\[
\mathbb{P}_{Y|X}(y_1, y_2, \ldots, y_n|x_1, x_2, \ldots, x_n) = \prod_{i=1}^n P_{Y|X}(y_i|x_i),
\]

where, for every \(x \in F \), \(P_{Y|X}(\cdot|x) \) is a probability measure on \(\Phi \).

1.4.1 Binary Symmetric Channel

\(F = \Phi = \{0, 1\} \), with cross-over probability \(p \).

\[
P_{Y|X}(y|x) = \begin{cases}
1 - p & \text{if } y = x \\
p & \text{if } y \neq x
\end{cases}
\]

Note equivalently that \(\mathbb{P}_{Y|X}(\vec{y}|\vec{x}) = p^d_{H}(\vec{y}, \vec{x}) (1 - p)^{n-d_{H}(\vec{y}, \vec{x})} \).

1.4.2 Binary Symmetric Channel

\(F = \{0, 1\}, \Phi = \{0, 1, \epsilon\} \) with erasure probability \(p \).

\[
P_{Y|X}(y|x) = \begin{cases}
1 - p & \text{if } y = x \\
p & \text{if } y = \epsilon
\end{cases}
\]

Note equivalently that

\[
\mathbb{P}_{Y|X}(\vec{y}|\vec{x}) = p^{\text{number of erasures in } \vec{y}} (1 - p)^{n-\text{number of erasures in } \vec{y}} \prod_{i=1}^N \mathbb{I}_{y_i \in \{x_i, \epsilon\}}
\]

where \(\vec{y} = (y_1, y_2, \ldots, y_n), \vec{x} = (x_1, x_2, \ldots, x_n) \) and \(\mathbb{I} \) is an indicator function.