Part 2:
Codes for distributed linear data processing
N presence of straggling/faults/errors

Motivation: nonideal computing systems

Motivation: nonideal computing systems

M x V for 4 processors on AmazonEC?2 cloud system

<+— 10—

12_‘ 4

110°

v

Motivation: nonideal computing systems

‘ M x V for 4 processors on AmazonEC?2 cloud system \

3501 mmm Moo 9393973 | - Mean: 3985.655 <+« 10—b
Bl Median: 5366.5 Median: 3874.0 12_
300 BN Min: 4912 Min: 3710
B Max: 6570 Max: 4305 1106
B Processor2 B Processor4
50| ™ Mean: 3917.279 | W Mean: 4201.201
Median: 3915.0 | BB Median: 4200.5 \ 4
$ Min: 3706 B Min: 3788
Y Max: 4217 B Max: 5042
Q-200_ ax ax
-
©
W 150-
100
50 -
‘Ack: Jeremy Bai, CUHK] ‘ M ul| |‘I| |
O . . : 1 1 Lliites.. o
0 1000 2000 3000 4000 5000 6000 7000

Calculation time (microseconds)(66ms/interval)

Motivation: nonideal computing systems

‘ M x V for 4 processors on AmazonEC?2 cloud system \

Bl Processorl B Processor3 4_106_>
350- Bl Mean: 5393.973 Mean: 3885.885 A
Bl Median: 5366.5 Median: 3874.0 12_
300 - Bl Min: 4912 Min: 3710
B Max: 6570 Max: 4305 1106
B Processor2 I Processor4
250 - N Mean: 3917.279 B Mean: 4201.201
Median: 3915.0 | BB Median: 4200.5 \ 4
n Min: 3706 B Min: 3788
%—200_ Max: 4217 Bl Max: 5042
&
(©
W 150
1001
50-
/Ack: Jeremy Bai, CUHK] ‘ M ul| |‘I| |
O . . . ! [i, o
0) 1000 2000 3000 4000 5000 6000 7000

Calculation time (microseconds)(6oms/interval)
Practitioners are already using redundancy to address straggling

Organization: How to perform these computations”

1. 2.
A A B

efficiently, fast, in presence of faults/straggling/errors

Motivation: The critical steps for many compute applications
(Machine learning: neural nets, LDA, PCA, Regression, Projections.

Scientific computing and physics simulations)

Rest of the tutorial is divided into two parts:

|. Big processors [Huang, Abraham ’84]
II. Small processors [von Neumann ’56]

Part |: Big processors
Processor memory scales with problem size

///H*'PROCESSOR
1
PROCESSOR —\\\
MASTER >
NODE R FUSION
NODE

\\\!*>PROCESSOR——//

O P

System metrics

PROCESSOR
1
/I' PROCESSOR \

MASTER 2
NODE . FUSION

\!$. NODE
PROCESSOR J

[P

System metrics
/H" PROCESSOR
1
PROCESSOR

MASTER i—y 2 %‘
NODE . FUSION

: NODE
NLR .,

1. Per-processor computation costs:
- # operations/processor

2. Straggler tolerance (directly related to “recovery threshold”)
- max # processors that can be ignored by fusion node

3. Communication costs
- number of bits exchanged between all processors
- can use more sophisticated metrics. See [Bruck et al.’97]

“Efficient Algorithms for All-to-All Communications in Multiport Message-Passing Systems”
Bruck, Ho, Kipnis, Upfal, Weathersby ‘97

.1

Parallelization for speeding up matrix-vector products

N/P

A Ay L. Ap | %

M x N

P processors (master node aggregates outputs)

Operations/processor: MN/P (e.g. P=3, each does 1/3rd computations)

Parallelization for speeding up matrix-vector products

N/P

A Ay L. Ap | %

M x N
N x 1

P processors (master node aggregates outputs)

Operations/processor: MN/P (e.g. P=3, each does 1/3rd computations)
In practice, processors can be delayed (“stragglers”) or faulty

Recovery threshold = P i.e., Straggler tolerance = 0

Parallelization for speeding up matrix-vector products

N/P

A Ay L. Ap | %

M x N
N x 1

P processors (master node aggregates outputs)

Operations/processor: MN/P (e.g. P=3, each does 1/3rd computations)
In practice, processors can be delayed (“stragglers”) or faulty

Recovery threshold = P i.e., Straggler tolerance = 0

Note: can parallelize by dividing the matrix horizontally as well

Parallelization for speeding up matrix-vector products

M/P A,

P processors (master node aggregates outputs)

Operations/processor: MN/P (e.g. P=3, each does 1/3rd computations)
In practice, processors can be delayed (“stragglers”) or faulty

Recovery threshold = P i.e., Straggler tolerance = 0

Note: can parallelize by dividing the matrix horizontally as well

Replication: repeat Job r times

N/P
€«<—>

A1 A2 . o AP 2511

X2

2P N x 1

Replication: repeat Job r times

—>
AlA, Ap/ X1

X2
Al A, Apy

"N x1

Replication: repeat Job r times

>
AlA, Ap/ X1

X2
A A, Ap/

N x 1

P processors

operations/processor: rMN/P f
Straggler tolerance: r-1 f Recovery threshold: P-r+1 *

Replication: repeat Job r times

>
AlA, Ap/ X1
X2

A A, Ap/

N x 1

P processors
operations/processor: rMN/P f

Straggler tolerance: r-1 f Recovery threshold: P-r+1 *

Also see: recent works of [Joshi, Soljanin, Wornell]

A coding alternative to replication: MDS compute codes ("ABFT”)

Algorithm-Based Fault Tolerance

[Huang, Abraham "84] Hestabert s
[Lee, Lam, Pedarsani, Papailopoulos, ;aull]t—ToIerance
Ramchandran *16] fng?(_',?,‘fes

Performance
Computing

@ Springer

A coding alternative to replication: MDS compute codes (“ABFT”)

Algorithm-Based Fault Tolerance
[Huang, Abraham ’84]

[Lee, Lam, Pedarsani, Papailopoulos,
Ramchandran ’16]

A coding alternative to replication: MDS compute codes (“ABFT”)

A, Algorithm-Based Fault Tolerance
[Huang, Abraham ’84]

[Lee, Lam, Pedarsani, Papailopoulos,
A . X Ramchandran ’16]

Example: P=3, K=2

A coding alternative to replication: MDS compute codes (“ABFT”)

Algorithm-Based Fault Tolerance
A [Huang, Abraham ’84]

[Lee, Lam, Pedarsani, Papailopoulos,
. X Ramchandran ’16]

Example: P=3, K=2

A coding alternative to replication: MDS compute codes (“ABFT”)

A, Algorithm-Based Fault Tolerance
[Huang, Abraham ’84]

[Lee, Lam, Pedarsani, Papailopoulos,
A . X Ramchandran ’16]

Example: P=3, K=2

A coding alternative to replication: MDS compute codes (“ABFT”)

A, Algorithm-Based Fault Tolerance
[Huang, Abraham ’84]

[Lee, Lam, Pedarsani, Papailopoulos,
A . X Ramchandran ’16]

Example: P=3, K=2

Assumption: A known in advance

A coding alternative to replication: MDS compute codes (“ABFT”)

A, Algorithm-Based Fault Tolerance
- [Huang, Abraham ’84]

L [Lee, Lam, Pedarsani, Papailopoulos,

A . X Ramchandran ’16]

A+ A,

Example: P=3, K=2

Assumption: A known in advance

Can tolerate 1 straggler
operations per processor = MN/2

A coding alternative to replication: MDS compute codes (“ABFT”)

A, Algorithm-Based Fault Tolerance
[Huang, Abraham ’84]
[Lee, Lam, Pedarsani, Papailopoulos,
.. X Ramchandran ’16]

Example: P=3, K=2

Assumption: A known in advance

Can tolerate 1 straggler
operations per processor = MN/2

A coding alternative to replication: MDS compute codes (“ABFT”)

A, Algorithm-Based Fault Tolerance
- [Huang, Abraham ’84]

L [Lee, Lam, Pedarsani, Papailopoulos,

A . X Ramchandran ’16]

A+ A,

Example: P=3, K=2

Assumption: A known in advance

Can tolerate 1 straggler
operations per processor = MN/2

A coding alternative to replication: MDS compute codes (“ABFT”)

A, Algorithm-Based Fault Tolerance
- [Huang, Abraham ’84]
L [Lee, Lam, Pedarsani, Papailopoulos,

A . X Ramchandran ’16]

A+ A,

Example: P=3, K=2

Assumption: A known in advance

Can tolerate 1 straggler
operations per processor = MN/2

P processors

In general, use a (P,K)-MDS code (K < M):
Recovery Threshold = K, i.e., Straggler tolerance = P-K
operations/processor = MN/K (> MN/P in uncoded)

MDS coded computing of M x V outperforms replication

10

MDS coded computing of M x V outperforms replication

[Lee et al]: MDS beats replication in expected time (exponential tail models)

10

MDS coded computing of M x V outperforms replication

[Lee et al]: MDS beats replication in expected time (exponential tail models)

Experiments on AmazonEC?2:
[Lee at al

Average runtime (s)

—
o
' |

Bl Uncoded []Coded

>35% reduction

[Fig courtesy
R Pedarsani]

o N P~ (o)) oo
PR T T N T N T N TN SO SN [N T SO S N S

Square Fat Tall
Matrix type

10

MDS coded computing of M x V outperforms replication

[Lee et al]: MDS beats replication in expected time (exponential tail models)

Experiments on AmazonEC2: . [WaEncoded ICoded
Lee at al Ol .
[| o ° 35% reduction
'-E' 6
>
o [Fig courtesy
S 2 R Pedarsani]
g 0 | | T
Square Fat Tall
Matrix type

Can tradeoff # operations/processor for straggler tolerance
Codes for # operations/processor < N ?

10

Short-Dot codes [Dutta, Cadambe, Grover "16]

[Tandon, Lei, Dimakis, Karampatziakis ‘16]

THE MATRIX-VECTOR PRODUCT
TO BE COMPUTED

i

A |

SHORT AND FAT MATRIX

X
VERY LONG
VECTOR

11

Short-Dot codes [Dutta, Cadambe, Grover "16]

[Tandon, Lei, Dimakis, Karampatziakis ‘16]

THE MATRIX-VECTOR PRODUCT ILLUSTRATION OF SHORT-DOT IMPLEMENTATION
TO BE COMPUTED — —

B

A — B —

SHORT AND FAT MATRIX » CODED MATRIX

VALUES SENT T(
PROCESSOR 1

x Any sparsity pattern with
VERY LONG equal number of zeros in
VECTOR :
each row, and in each column

11

Short-Dot codes [Dutta, Cadambe, Grover "16]

[Tandon, Lei, Dimakis, Karampatziakis ‘16]

THE MATRIX-VECTOR PRODUCT ILLUSTRATION OF SHORT-DOT IMPLEMENTATION PARALLEL PROCESSING ARCHITECTURE
TO BE COMPUTED — — PROCESSOR
1
mES= S o= == e <\
h MASTER [_» 2 X
. FUSION
VALUES SENT TO NODE . ‘ NODE
A | B _ PROCESSOR 1 \ . —
PROCESSOR

SHORT AND FAT MATRIX » CODED MATRIX =

x Any sparsity pattern with
VERY LONG equal number of zeros in
VECTOR :
each row, and in each column

11

Short-Dot codes [Dutta, Cadambe, Grover "16]

[Tandon, Lei, Dimakis, Karampatziakis ‘16]

THE MATRIX-VECTOR PRODUCT
TO BE COMPUTED

LR

A

SHORT AND FAT MATRIX

X
VERY LONG
VECTOR

Sparsity

>

ILLUSTRATION OF SHORT-DOT IMPLEMENTATION

B

B —

CODED MATRIX

Any sparsity pattern with
equal number of zeros In

each row, and in each column

PARALLEL PROCESSING ARCHITECTURE

VALUES SENT TO
PROCESSOR 1

g

MASTER |__»
NODE

A

PROCESSOR
1

PROCESSOR
2

PROCESSOR
P

X\

FUSION
NODE

A

() allows tradeoff between computation per-processor and straggler tolerance;
(i) reduces communication to each processor

11

Short-Dot codes [Dutta, Cadambe, Grover "16]

[Tandon, Lei, Dimakis, Karampatziakis ‘16]

THE MATRIX-VECTOR PRODUCT ILLUSTRATION OF SHORT-DOT IMPLEMENTATION PARALLEL PROCESSING ARCHITECTURE

1
|j] h MASTER] > K
VALUES sENT To L_NODE . ‘ F,EIJSIE?EN
A | B . PROCESSOR 1 \» . —
PROCESSOR
SHORT AND FAT MATRIX » CODED MATRIX P
x Any sparsity pattern with
VERY LONG equal number of zeros in
VECTOR .
each row, and in each column
Sparsity

() allows tradeoff between computation per-processor and straggler tolerance;
(i) reduces communication to each processor

operations/processor = s <N
Recovery threshold = K = P(1-s/N)+M f

11

Short-Dot codes: the construction

Given A, an M x N matrix, M < P, and a parameter K, M < K < P,
an (s,K) Short-Dot code consists of a P x N matrix B satisfying:

1) A is contained in span of any K rows of B
2) Every row of B is s-sparse

S

a “short” dot product of x

with one row of B
X

D Each processor computes

I
I

N x 1
BP><N

“Short-Dot”; Computing Large Linear Transforms Distributedly Using Coded Short Dot Products
[Dutta, Cadambe, Grover, NIPS 20106] 12

Achievabllity and outer bound

Achievability: For any M x N matrix A, an (s, K) Short-Dot code exists s.t.:
N

...and outputs of any K processors suffice, i.e., Straggler tolerance = P-K

Proof overviews in appendices of this talk

13

Achievabllity and outer bound

Achievability: For any M x N matrix A, an (s, K) Short-Dot code exists s.t.:
N

...and outputs of any K processors suffice, i.e., Straggler tolerance = P-K

Outer bound: Any Short-Dot code satisfies:
N M? P
s > F(P — K+ M) ()

... for “sufficiently dense” A

Proof overviews in appendices of this talk

13

Achievabllity and outer bound

Achievability: For any M x N matrix A, an (s, K) Short-Dot code exists s.t.:
N

...and outputs of any K processors suffice, i.e., Straggler tolerance = P-K

Outer bound: Any Short-Dot code satisfies:
N
S > F(P—K—I—M)—O(N)

... for “sufficiently dense” A

Proof overviews in appendices of this talk

13

Short-Dot strictly and significantly outperforms
Uncoded/Replication/ABFT (MDS)

Exponential taill models

= 0.5 UNCODED ~
= O
2 -0.5 MDS CODING
3 _1 L n= Oos
=P/log P
1.5/ SHORT-DOT
-2 L)
0 20 40 60 80 100

Log_(P)

Paper contains expected completion time analysis for exponential service time
model, and experimental results.
For N>>M, decoding complexity negligible compared to per-processor computation

14

Related result: Gradient coding

model B mod=E ol : [Tandon, Lei, Dimakis, Karampatziakis’17]
~ worker 1 worker 2 ~_worker 3
D, | D, D,
DZ I D5 D8
D3 I D6 D9
g1 gz ga
\ mas‘cer /
[Figure courtesy add gradients
A Dimakis] and update
model
model B

What if some gradient-computing workers straggle®?

15

Related result: Gradient coding

model B model f model B [Tandon, Lei, Dimakis, Karampatziakis’17]
~ worker 1 worker 2 ~_worker 3
> : > > Want to compute:
D3 I D6 D9

Zgi

g1 gz 33
\ maS‘:er /
[Figure courtesy add gradients
A Dimakis] and update
model
model B

What if some gradient-computing workers straggle®?

15

Related result: Gradient coding

model B model f model B [Tandon, Lei, Dimakis, Karampatziakis’17]
~ worker 1 worker 2 ~_worker 3
D, [] D, D, . B =
— = - - Want to compute: g1
D; I Ds Dy g2

Zgi:[l,l,...,l]

81 8> 83

\ mas‘:er / kﬂOWn “matri)(’! gN
[Figurelcourtesy add gradients vector COmpUted
A Dimais] i distributedly

model B

What if some gradient-computing workers straggle®?

15

Related result: Gradient coding

model B model f model B [Tandon, Lei, Dimakis, Karampatziakis’17]
worker 1 worker 2 worker 3

D, [] D, D, . B =

— = - - Want to compute: g1

D; I Ds | Dy g2

Zgi:[l,l,...,l]

81 8> 83

\ master / kﬂOWﬂ matrIX L gN |
[Figurelcourtesy add gradients vector COmpUted
A bimais " nodel distributedly

model B

What if some gradient-computing workers straggle?

Solution: code “matrix” A (i.e., [1 1 ... 1]) using a Short-Dot code
- introduce redundancy in datasets consistent with the Short-Dot pattern
- computes the correct (redundant) gradients at each processor

Can also be viewed as a novel “distributed storage code for computation”

15

model B

worker 1

D,

D,

E
D, &
il

81

\ |

[Figure courtesy
A Dimakis]

Related result: Gradient coding

model

worker 2

8>

masker

add gradients
and update
mode

model B

worker 3

model B

[Tandon, Lei, Dimakis,

Want to compute

Zgi:[l,l,...

known “matrix gN

What if some gradient-computing workers straggle?

Solution: code “matrix” A (i.e., [1 1 ... 1]) using a Short-Dot code
- introduce redundancy in datasets consistent with the Short-Dot pattern
- computes the correct (redundant) gradients at each processor

Karampatziakis’17]

g1
g2
) 1])

vector computed
distributedly

Can also be viewed as a novel “distributed storage code for computation”

For VI'V, coding can beat replication only due to integer effects.

No scaling-sense gain, at least in this coarse model, over replication.
(See also [Halbawi, Azizan-Ruhi, Salehi, Hassibi *17])

15

Trend:

-V x V: offers some advantage over replication

- Mx V: arbitrary gains over replication, MDS coding

16

Trend:

-V x V: offers some advantage over replication
- Mx V: arbitrary gains over replication, MDS coding

- Next: MxM: 7

16

Trend:

-V x V: offers some advantage over replication

- Mx V: arbitrary gains over replication, MDS coding
- Next: Mx M: ?

Answer: arbitrarily large gains over M x V-type coding!

16

Trend:

-V x V: offers some advantage over replication

- Mx V: arbitrary gains over replication, MDS coding
- Next: Mx M: ?

Answer: arbitrarily large gains over M x V-type coding!

break!

16

17

Uncoded parallelization

Let’s assume that each processor can store 1/m of A and 1/n of B

Ay
lA..Z B1B2.00Bn
A,

NxXN NxN

Total mn processors

(i,j)-th Processor receives Ai, Bj, computes Ai x Bj, sends them to fusion center

operations/processor = N°/mn (we’ll keep this constant across strategies)
Recovery Threshold = P, Straggler tolerance = 0

18

Strategy : MxV = M x M

Ay
A2 Bl BQooan
A T =P/n

Each processor computes a product AiB;

Recovery threshold = P — P/n+m = ©(P)
operations/processor: N /mn

Algorithm-based Fault Tolerance (ABFT)

C C
H H
: c
c| —
A X B K| — C K
S S
U U
v M
CHECKSUM | CHECKSUM | [T]

Fig. 1. A checksum matrix multiplication.

[Huang, Abraham’84]
[Lee, Suh, Ramchandran’17]

20

Algorithm-based Fault Tolerance (ABFT)

A1

A2

A3

A4

B2

B3

B4

A1B1

||

Fig. 1. A checksum matrix multiplication.

[Huang, Abraham’84]
[Lee, Suh, Ramchandran’17]

20

Algorithm-based Fault Tolerance (ABFT)

A1 A1B1

A2 N4 B1|B2|B3|B4

||

A3

A4

Fig. 1. A checksum matrix multiplication.

[Huang, Abraham’84]
[Lee, Suh, Ramchandran’17]

Recovery threshold: K = 2(m — 1)VP — (m —1)2 +1 = ©(VP)
Straggler resilience: P — K [Lee, Suh, Ramchandran’17]
operations/processor: N* /mn

Algorithm-based Fault Tolerance (A

A1

A2

A3

A4

B1

B2

B3

B4

Recovery threshold: K = 2(m — 1)VP — (m —1)2 +1 = ©(VP)
Straggler resilience: P — K

operations/processor: N* /mn

Next: Polynomial codes [Yu, Maddah-Ali, Avestimehr "17]

Recovery threshold: K = mn

operations/processor: N* /mn

[Lee, Suh, Ramchandran’17]

||

3FT)

A1B1

Fig. 1. A checksum matrix multiplication.

[Huang, Abraham’84]
[Lee, Suh, Ramchandran’17]

20

Polynomial codes [Yu, Maddah-Ali, Avestimehr *17]

Intuition: forget matrices for this slide

21

Polynomial codes [Yu, Maddah-Ali, Avestimehr *17]

Intuition: forget matrices for this slide

{Ai}1B;}

21

Polynomial codes [Yu, Maddah-Ali, Avestimehr *17]

Intuition: forget matrices for this slide

{Ai}{Bj} —

PROC 1

Y

PROC 2

=

PROC P

21

Polynomial codes [Yu, Maddah-Ali, Avestimehr *17]

Intuition: forget matrices for this slide

GOAL: Compute all products of the form A; B

/., PROC 1

(A} {B}—»| eroco

PROC P

21

Polynomial codes [Yu, Maddah-Ali, Avestimehr *17]

Intuition: forget matrices for this slide

GOAL: Compute all products of the form A; B

/., PROC 1
—\
—>

{A;}{B;} —>| rrocz DECODER

: / WANTSALL A; B 'S

PROC P

21

Polynomial codes [Yu, Maddah-Ali, Avestimehr *17]

Intuition: forget matrices for this slide

GOAL: Compute all products of the form A; B

/., PROC 1
—\
—>

{A;}{B;} —>| rrocz DECODER
/ WANTSALL A; B 'S

PROC P

Constraints:
1) Can only send information of size of one Ai and one B;

2) Processor can only compute a product of its inputs

21

Intuition: forget matrices for this slide

Polynomial codes [Yu, Maddah-Ali, Avestimehr *17]

/—>

{Ai}{Bj} —

GOAL: Compute all products of the form A; B

PROC 1

PROC 2

A
—>

/ WANTS ALL A; B 'S

Constraints:

PROC P

1) Can only send information of size of one Ai and one B;
2) Processor can only compute a product of its inputs

DECODER

Solution:
Send Y vA;and » 6B,

21

Intuition: forget matrices for this slide

Polynomial codes [Yu, Maddah-Ali, Avestimehr *17]

/—>

{Ai}{Bj} —

GOAL: Compute all products of the form A; B

PROC 1

PROC 2

A
—>

/ WANTS ALL A; B 'S

Constraints:

PROC P

1) Can only send information of size of one Ai and one B;
2) Processor can only compute a product of its inputs

DECODER

Solution:
Send) vipAd;and) 6ipB;

21

Polynomial codes [Yu, Maddah-Ali, Avestimehr *17]

Intuition: forget matrices for this slide

GOAL: Compute all products of the form A; B

/., PROC 1
—\
—>

{A;} {B;} — erocz DECODER
/ WANTSALL A; B ;'S
PROC P
c Solution:
onstraints: "y 5 B
1) Can only send information of size of one A; and one B; Send Z Tipdiand Z wpt
1 (5

2) Processor can only compute a product of its inputs

{Ai};'11 {Bj }?:1

21

Achievabllity

You can use random codes.
But “polynomial codes” get you there with lower enc/dec complexity

Example:

_ _ A 1.A
m=2, N=2 1[13i+1223 —| PROC 1
1 DD

\
{A1, Ay} %ﬁz, PROC i —»| DECODER
1 D9
{BlaBZ}
Al ‘|‘PA2
LB1+P2 5| PROCP

~

Proc i computes C, = AZP) = AB| +1A;B; +1 A1B2 + 17 A2B2

Achievabllity

You can use random codes.
But “polynomial codes” get you there with lower enc/dec complexity

Example:
m=2, Nn=2

A 1.A
1[Bi+122B —> PROC 1
1 LAI)
T~

A +1.A .

1 T =222 PROCj —| DECODER
{A1, Az} B, +i%.B,
{Bla BQ}

A+ P.A2>
B, + P?.B,

PROC P

~

Proc i computes C; = A;B; = A1B; +iAsB; +i’A 1By + i°A5B5

Fusion center needs outputs from only 4 such processors! e.g. from 1,2,3,4:
T Cy] [10 11 12 137 [ABy |
C, 20 9l 92 93 A,B; | Invert a Vandermonde matrix
Cs; | | 3% 3+ 32 3° AB,
C, | | 4% 4t 4% 43 | | AsBsy |

22

Achievabllity

You can use random codes.
But “polynomial codes” get you the

re with lower enc/dec complexity

Example:

m=2, N=2 At 1A,

ﬂ3r1-|- 12.B>

B, +i°.B,
{Bla BQ}

—» PROC 1

(AL, As) w PROC /| —| DECODER

_ A +PAy

T~

~

Proc i computes C; = A,B; = AB

Fusion center needs outputs from on

B, + P°.B,

PROC P

L +iAsB; + A By + i°AyB,
y 4 such processors! e.g. from 1,2,3,4:

- AB; |
A,B, | Invert a Vandermonde matrix

A.]_B2

CCy] [19 1t 12 13]
Cy, | | 20 2t 22 23
C, | | 3% 3t 32 3°
I @4 | I 40 41 42 43 |

In general, Recovery Threshold = mn (atta

i A2B2

ined using RS-code-type construction) oo

Summary so far...

-V xV: Coding offers little advantage over replication
- M x V. Short-Dot codes provide arbitrary gains over replication, MDS coding,
- M x M: polynomial coding provides arbitrary gains over M x V codes

What additional costs come with coding?

- encoding and decoding complexity (skipped here for simplicity)
- Next: degradation is not graceful as you pull deadline earlier

To see this, let’s look a problem with repeated M x V, and slow convergence to solution

23

Understanding a limitation of coding:

Coding for linear iterative solutions
MxV computation input
xUHD) = (1 — d)AxW + dr.

Converges to x* satisfying x* = (1 — d)Ax* + dr.

Subtracting, etV = (1 — d)Ae®, where el = x() — x*,

“Coding Method for Parallel Iterative Linear Solver,” Y Yang, P Grover, S Kar, Submitted

24

Understanding a limitation of coding:

Coding for linear iterative solutions
MxV computation input
xUH) = (1 — d)AxY + dr.

Converges to x* satisfying x* = (1 — d)Ax* + dr.

Subtracting, etV = (1 — d)Ae®, where el = x() — x*,

Convergence of PageRank using power-iteration

—_i
o
o

—l
S
o1

—_i

o
L
o

Average Mean Squared Error
S

20 40 60 80
Number of iterations

o

“Coding Method for Parallel Iterative Linear Solver,” Y Yang, P Grover, S Kar, Submitted

24

Understanding a limitation of coding:
Coding for linear iterative solutions

MxV computation input

xUH) = (1 —) AxY + dr.
Converges to x* satisfying x* = (1 — d)Ax* + dr.

Subtracting, etV = (1 — d)Ae®, where el = x() — x*,

Convergence of PageRank using power-iteration

—_i
o
o

—l
S
o1

—_i

o
L
o

Average Mean Squared Error
S

20 40 60 80
Number of iterations
Next: how to code multiple linear iterative problems in parallel

o

“Coding Method for Parallel Iterative Linear Solver,” Y Yang, P Grover, S Kar, Submitted

24

Understanding a limitation of coding:
Coding for linear iterative solutions

MxV computation input

xUH) = (1 —) AxY + dr.

Converges to x* satisfying x* = (1 — d)Ax* + dr. X" linearinr

Subtracting, etV = (1 — d)Ae®, where el = x() — x*,

Convergence of PageRank using power-iteration

—_i
o
o

—l
S
o1

—_i

o
L
o

Average Mean Squared Error
S

20 40 60 80
Number of iterations
Next: how to code multiple linear iterative problems in parallel

o

“Coding Method for Parallel Iterative Linear Solver,” Y Yang, P Grover, S Kar, Submitted

24

Solving multiple iterative problems in parallel

Classical coded computation applied to linear iterative problems

> Initialize (Encoding)

ey Y . s1, . sp] = [t 1k] - Gocp.
lL.. "B ... (Encoding)
l== = rr © » Parallel Computing:

511 Szx [; power iterations at the 2-th
Noker 1| [Worker 2 Worker?’ worker with input s;

l i (Parallel

[] . Computlng) (le) (11) (lp)

=y(1) =y(2|2) K/B) YNXP:[yl oo, Yp]

L]] N

\\“ . » Post Processing (Decoding) Matrix

| inversion on fastest k£ processors.
(Decodlng)

P ~

XT _ G—l (Y(TC”))T

25

Solving multiple iterative problems in parallel

Classical coded computation applied to linear iterative problems

> Initialize (Encoding)

amy me . S1,-...8p] = [F1o- 1) - G
lL.. "B ... (Encoding)
l== = rr © » Parallel Computing:
511 Szx [; power iterations at the 2-th
Worker 1 [Worker 2 kaer?’ worker with input s;
l i (Parallel
[] . Computlng) (le) (l1) (lp)
=y(1) =y(2|2) XyIS) YNXP:[yl oo Yp]
. . . u . .
T | » Post Processing (Decoding) Matrix
X i Ty] .
EEEE (Decoding) inversion on fastest k processors.
(_N_> AN ~

XT _ G—l (Y(TC”))T

IS this invertible?

Is this well conditioned?
25

Solving multiple iterative problems in parallel

Classical coded computation applied to linear iterative problems

> Initialize (Encoding)

amy me . S1,-...8p] = [F1o- 1) - G
lL.. "B ... (Encoding)
l== = rr © » Parallel Computing:
511 Szx [; power iterations at the 2-th
Worker 1 [Worker 2 kaer?’ worker with input s;
l i (Parallel
[] . Computlng) (le) (l1) (lp)
=y(1) =y(2|2) XyIS) YNXP:[yl oo Yp]
. . . u . .
T | » Post Processing (Decoding) Matrix
X i Ty] .
EEEE (Decoding) inversion on fastest k processors.
(_N_> AN ~

XT _ G—l (Y(TC”))T

IS this invertible”? Yes!

Is this well conditioned?

25

Solving multiple iterative problems in parallel

Classical coded computation applied to linear iterative problems

> Initialize (Encoding)

EET BT B s1,...,8p] = [r1,. .., 1%] - Gpxep-
lL.. = B EE (Encoding)
l== = rr © » Parallel Computing:
511 Szx [; power iterations at the 2-th
Worker 1 Worker 2 Worker 3 Worker Wlth input S;
l i l (Parallel
[] Computing) (T) (l) (l)
= [] (3) YNS!P:[Y117"'7YPP]'
[]

» Post Processing (Decoding) Matrix

| inversion on fastest k£ processors.
(Decoding)

}ET _ é_l(Y(TC”))T,
IS this invertible”? Yes!

IS this well conditioned? No!
25

What is the effect of a poor conditioning numlber?
—rror blows up!

Experiments on CMU clusters:
Google Plus graph

\

o) 10 20 30
Computation deadline T d (sec)

_ Natural extension of
ABFT

_. Average mean-squared error

What is the effect of a poor conditioning numlber?
—rror blows up!

Experiments on CMU clusters:
Google Plus graph

o) 10 20 30
Computation deadline T d (sec)

_ Natural extension of
ABFT

_. Average mean-squared error

What is the effect of a poor conditioning numlber?
—rror blows up!

Experiments on CMU clusters:
Google Plus graph

v g ABFT
100 sesoned \

o) 10 20 30
Computation deadline T d (sec)

10°

_ Natural extension of
ABFT

_. Average mean-squared error

0-15

Similar issues arise in designing good “analog coding with erasures”
[Haikin, Zammir ISIT"16][Haikin, Zamir, Gavish '17] .

A graceful degradation with time:
Coded computing with weighted least squares

X T x Y (le)
EEEE _ ==== (Decoding) » Post Processing (Decoding)
~ N-— HEER

Decoding
Matrix

XT (GA 1GT) 1GA_1(Y(TdI))T

Similar to the “weighted
least-square” solution.

27

Welighted least squares outperforms competition;
Degrades gracefully with early deadline

I I I I
! x ABFT
100£xmmmmm i : 3
A S Q)
e Q

Weighted least squares

10°

Average mean-squared error
S
@)

10'10 I Natural extension of
ABFT
10'15]]]]]
0 5 10 15 20 25 30

Computation deadline T d (sec)

Summary thus far...

ABFT ; Coded computation

New codes, new problems, new analyses,
CONVErSES

But, we need to be careful in lit-searching ABFET literature

Next: small processors

29

Sreak!

Questions/comments”?
Your favorite computation problem??

Preview of Part II: Small Processors

Controlling error propagation with small processors/gates
- No central processor to distribute/aggregate

Encoding/decoding also have errors

Part |l: “Small processors”

has so far received relatively less attention

31

What are small processors?

R Vo
V, H\/\/\TC’
1

1) Logic gates R
e.g. Dot product “nanofunction” in graphene
[Pop, Shanbhag, Blaauw labs '15-’16]

2) Analog “Nanofunctions™ and beyond CMOS devices

3) Processors with limited memory (i.e., ALL processors are small!)
- can’t assume that processor memory increases with problem size

Synthesize large reliable computations using small processors?

32

What is fundamentally new in small processor computing’?

1) Errors accumulate; information dissipates

a) Info-dissipation in noisy circuits:

—-

< D)—= € -
binary error probability

inputs of binary output

33

What is fundamentally new in small processor computing’?

1) Errors accumulate; information dissipates

a) Info-dissipation in noisy circuits: Noisy circuits
built with noisy gates
— €
bginae error probability

inputs of binary output

33

What is fundamentally new in small processor computing’?

1) Errors accumulate; information dissipates

a) Info-dissipation in noisy circuits: Noisy circuits
built with noisy gates

<DE) St I

binar
inputé, of binary output

33

What is fundamentally new in small processor computing’?

1) Errors accumulate; information dissipates

a) Info-dissipation in noisy circuits:

j

Noisy circuits
. built with noisy gates

v
y
—
7

< D=— €

binary %ability ﬁD&D*D*D*D*

inputs of binary output

%&
257
\

33

What is fundamentally new in small processor computing’?

1) Errors accumulate; information dissipates

a) Info-dissipation in noisy circuits:

j

Noisy circuits

v

LV

. built with noisy gates

bSinae %ability —'D_‘D—‘D—*DQD_, =

inputs of binary output
X — Y BSp(G)Z

;
5

33

What is fundamentally new in small processor computing’?

1) Errors accumulate; information dissipates

a) Info-dissipation in noisy circuits:

j

Noisy circuits

. built with noisy gates f% ;D %}—D
bginae %ability ﬁD*D*D*D*D“ =
inputs of binary output . y BS_C(E)Z
Classical Data-Processing Inequality “Strong” Data-Processing Ineguality
](X; Z) <1 I(X§ Z) f(e) <1 {El/%?ﬁesngsecrhai]wan 99| [Erkip, Cover '98]
I(X; Y) —](X; Y) — [Polayanskiy, Wu ’14]

[Anantharam, Gohari, Nair, Kamath '14]
[Raginsky ’"14]

33

What is fundamentally new in small processor computing’?

1) Errors accumulate; information dissipates

a) Info-dissipation in noisy circuits: Noisy circuits
built with noisy gates

<P St I s

binary

inputs of binary output
X — Y BSp(G)Z

Classical Data-Processing Inequality “Strong” Data-Processing Inequality
[Pippenger ’88]

j

LV

v

;
5

](X; Z) I(X§ Z) < 1 [Evans, Schulman ’99][Erkip, Cover 98]
I(X’ Y) < 1 I(X‘ Y) — f(e) < [Polayanskiy, Wu ’14]
y ’ [Anantharam, Gohari, Nair, Kamath "14]

[Raginsky ’"14]

b) Distortion accumulation with quantization noise
(e.g. in “data summarization”, consensus, etc.)

YZSt = q(wx,) +g(w,X,)

+q(WyX;) + WX,
x, dvx)

q(ys")

33

What is fundamentally new in small processor computing’?

1) Errors accumulate; information dissipates

a) Info-dissipation in noisy circuits:

LV

~/

v

j

Noisy circuits
. built with noisy gates

bSinae %ability —'D_‘D—‘D—*DQD_, =

: of binary output
inputs v BS_C’(G)Z

X
Classical Data-Processing Inequality “Strong” Data-Processing Inequality

[Pippenger ’88]
](X; Z) <1 I(X§ Z) < f(e) <1 [Evans, Schulman ’99][Erkip, Cover 98]
I(X:Y) ~ I(X;Y) —

[Polayanskiy, Wu ’14]

[Anantharam, Gohari, Nair, Kamath '14]
[Raginsky ’"14]

b) Distortion accumulation with quantization noise

(e.g. in “data summarization”, consensus, etc.)

2
1 Oy

icati - : . L= — —L
v g)) An application of cut-set bound: R, i =3 log,

\MW,& [Cuff, Su, El Gamal *09] D,

2
n tal-distortion bound: R > Liog, &5 _o(D"
ncremental-distortion bound: ipn() 2 = l0g, ——=-0(D,”)

.. [Yang, Grover, Kar IEEE Trans IT’17] 2 AD,

l

q(ys")

33

What is fundamentally new in small processor computing’?

1) Errors accumulate; information dissipates

a) Info-dissipation in noisy circuits:

j

Noisy circuits
. built with noisy gates

bSinag %ability %DDDD— _

inputs of binary output
X — Y BSp(E)Z

Classical Data-Processing Inequality “Strong” Data-Processing Inequality

LV

v

;
5

[Pippenger ’88]
](X; Z) <1 I(X§ Z) < f() <1 [Evans, Schulman ’99][Erkip, Cover 98]
I(X' Y) — I(X' Y) — € [Polayanskiy, Wu ’14]
Y ! [Anantharam, Gohari, Nair, Kamath "14]
[Raginsky ’"14]
b) Distortion accumulation with quantization noise
(e.g. in “data summarization”, consensus, etc.)
- R » o
5 g+ g An application of Cut—se’E bound: K, py(;) = 5 0g, —D
\q(wsx3)+w4x4 [Cuff, Su, El Gamal "09] i
2
L awx) 1 Og
o e R .oy = =log,—=-O(D;")
i— PN (i) 2 i
S& x [Ya 17] 2 AD,
Y5 = gy)+ () 3, X, tighter by an unbounded factor

33

What is fundamentally new in small processor computing”

1) Errors accumulate; information dissipates

2) Decoding, and possibly encoding, also error prone

Essential to analyze decoding/encoding costs in noisy computation:
there may be no conceptual analog of Shannon capacity in computing problems
[Grover et al.’07-"15][Grover ISIT’14][Blake, Kschischang ’15,’16]

Error-prone decoding (often message-passing for LDPCs)
[Taylor ‘67][Hadjicostis, Verghese ’05][Vasic et al. '07-’13][Varshney '11][Grover, Palaiyanur, Sahai '10]
[Huang, Yao, Dolecek '14][Gross et al. ’13][Vasic et al.’16]

Error-prone encoding [Yang, Grover, Kar "14][Dupraz et al. '15]
- see also erasure version [Hachem, Wang, Fragouli, Diggavi ‘13]

Can we compute M x V reliably using error-prone gates? Is it even possible”

We’ll next discuss this for 1) Gates; 2) Processors

34

1,72, ..., TK| = [S1,82,...,S]

OQutput

M X V on noisy gates: the basics

Input

A

L inear transform

LXK

35

M X V on noisy gates: the basics

1,72, ..., TK| = [S1,82,...,S]
Output Input
[33173327'”733]\7] — [817827°'°78L]
Coded Input)
output

A

L inear transform

LXK

generator matrix

LXK

I wi|P

G

Systematic

KXxN

35

1,72, ..., TK| = [S1,82,...,S]

OQutput

[33173327'”733]\7] — [817827°'°78L]
Coded Input
output

M X V on noisy gates: the basics

Input

A

Linear transform 4 LxK

Ixxx|P

Systematic
generator matrix

~

(3 : coded generator matrix

d ILxK L G _

KxN

35

1,72, ..., TK| = [S1,82,...,S]

OQutput

[33173327'”733]\7] — [817827°'°78L]

Coded
output

M X V on noisy gates: the basics

Input

Input

A

Linear transform 4 LxK

A]IKXK“P)

Jd LxK L G Jd KXN
Systematic
generator matrix

~

(3 : coded generator matrix
Note: rows of (5 are also codewords of (3!

35

M X V on noisy gates: the basics

1,72, ..., TK| = [S1,82,...,S] A
Output Input L Linear transform 4 LxK
[33173327'”733]\7]:[817827°'°78L] A I[KXKHP)
Coded Input L doxk L G 1 KxN
output Systematic

generator matrix

~

(3 : coded generator matrix
Note: rows of (5 are also codewords of (3!

Encoded computation: multiply S with @

Decoding: use parity-check matrix H for (

35

M X V on noisy gates: the basics

1,72, ..., TK| = [S1,82,...,S] A
Output Input L Linear transform 4 LxK
[33173327'”733]\7]:[817827°'°78L] A I[KXK“P)
Coded Input L doxk L G 1 KxN
output Systematic

generator matrix

~

(3 : coded generator matrix

Note: rows of (v are also codewords of (3!

PRECOMPUTED
NOISELE@SLY

Encoded computation: multiply S with @

Decoding: use parity-check matrix H for (

35

A difficulty with this approach: error propagation

Naive computation of X = s(& requires computing x,;, = Z S;gji
J

360

A difficulty with this approach: error propagation

Naive computation of X = s(& requires computing x,;, = Z S;gji
J

N
DN
¢V

g1/ S

360

A difficulty with this approach: error propagation

Naive computation of X = s(& requires computing x,;, = Z S;gji
J

¢V

/4
\{

N

g1/ S

gg%:} !JSL?::}

Requiring L AND gates, L-1 XOR gates

Error accumulates! As L— o« , each I; approaches a random coin flip

Addressing error accumulation:
a simple observation

source generator g1
sequence matrix g
\ 2
@z@/: 51,82, ..., Sk
Codeword ~
i gk

37

Addressing error accumulation:
a simple observation

source generator g1
sequence matrix g
\ 2
@z@/: 51,82, ..., Sk
Codeword ~
i gk

— 5181 + S282 + ... + SkEk

37

Addressing error accumulation:
a simple observation

source generator @1
sequence matrix g
\ 2
@:@/: 51,82, ..., Sk
Codeword ~
i Sk _

— 5181 + S282 + ... + SkEk

[

A valid codeword.
Can be corrected for errors

37

Addressing error accumulation:

a simple observation

source generator

sequence matrix

/@\@@/ ($1, 59, -+ ., Sk

Codeword

g1
g2

Sk

— 5181 + S282 + ... + SkEk

[

A valid codeword.
Can be corrected for errors

Any correctly computed partial sum is a valid codeword

37

Addressing error accumulation:
a simple observation

source generator @1
sequence matrix g
\ 2
@:@/: 51,82, ..., Sk
Codeword ~
i Sk)

— 5181 + S282 + ... + SkEk

[

A valid codeword.
Can be corrected for errors

Any correctly computed partial sum is a valid codeword

- possibly correct compute errors by embedding decoders inside encoder

- Use LDPC codes: utilize results on noisy decoding

(Wwe used [Tabatabaei, Cho, Dolecek '14])
37

“ENCODED”: ENcoded COmputation with Decoders EmbeddeD
(with decoding also being noisy)

CODEWORD

S1 |compuTe| |COMPUTE COMPUTE
—> & —>> & —> & >
CORRECT| | CORRECT CORRECT
A A A
S9 S3 Sk

“ENCODED”: ENcoded COmputation with Decoders EmbeddeD
(with decoding also being noisy)

S1 | COMPUTE COMPUTE COMPUTE CODEWORD
—> & —>> & —> & >
/| CORRECT |\ | CORRECT CORRECT
A \ A A
52 V53 Sk
Sq >

COMPUTE & CORRECT \\

NOISY L NOISY
COMPUTATION DECODING

5181 T S282

“ENCODED”: ENcoded COmputation with Decoders EmbeddeD
(with decoding also being noisy)

CODEWORD

S1 | COMPUTE COMPUTE COMPUTE
= & = & &
/| CORRECT |\ | CORRECT CORRECT
A \ A A
52 V53 Sk
k
S1

COMPUTE & CORRECT \\

NOISY

COMPUTATION —> DECODING

NOISY

5181 T S282

>

— S1§1 +32§2 +---+5k§k

38

“ENCODED”: ENcoded COmputation with Decoders EmbeddeD
(with decoding also being noisy)

S1 |compPuTE COMPUTE COMPUTE CODEWORD

—> & — & — & P ~ ~ ~
/| correcT |\ [comrecT CORRECT — S181 + S282 + ...+ SLEL
/ Y \ A A

S9 \ 83 St /
\ A valid codeword.
> Can be corrected for errors
COMPUTE & CORRECT \
NOISY NOISY
COMPUTATION —> DECODING
5181 + S282

38

“ENCODED”: ENcoded COmputation with Decoders EmbeddeD
(with decoding also being noisy)

S1 |compPuTE COMPUTE COMPUTE CODEWORD
—> & — & — & P ~ ~ ~
CORTECT CORARECT CORARECT — S181 + S282 + ...+ SLEL
S9 \ 83 St /
\ A valid codeword.
k Can be corrected for errors
81 >
COMPUTE & CORRECT
NOISY NOISY
COMPUTATION —> DECODING
5181 + S282

Better yet: ENCODED-Tree

38

“ENCODED”: ENcoded COmputation with Decoders EmbeddeD
(with decoding also being noisy)

S1 |compPuTE COMPUTE COMPUTE CODEWORD
—> & — & —P & . ~ ~ ~
/| correcT |\ [comrecT CORRECT — S181 + S282 + ...+ SLEL
A \ A A
S92 \S3 Sk /4
\ A valid codeword.
Sk > Can be corrected for errors
1
ENCODED Tree SRR

COMPUTE & CORRECT . |

\ C&C ! :

COMI\éCL)JITSXHON —> DEI\(IJC())ISTNG E i
S181 T S282 C&C D cac C&C | i .
codewor ' | %
Better yet: ENCODED-Tree / \ I\ / \ i | £
: : ()
cac|[cacllcaclcacllcacllcac][cacllcac]cac g
i | ?

¢ -

R TIRTIRINTIN I AT, >

- K QQ Q__

38

“ENCODED”: ENcoded COmputation with Decoders EmbeddeD
(with decoding also being noisy)

S1 |compPuTE COMPUTE COMPUTE CODEWORD
—> & — & — & ~ ~ ~
/| correcT |\ [comrecT CORRECT — S181 + S282 + ...+ SLEL
A . A 2
S9 " S3 Sk /4
\ A valid codeword.
Sk > Can be corrected for errors
1 -
\ % :3 ‘% . X A

\ ENCODED Tree 3'959 | |

COMPUTE & CORRECT S|3% | .

' C&C 5 | !

COMI\éCL)JITSXHON —> DEI\(IJC())ISTNG ’ l : i 1 | Ze E i
S$181 + S2892 C&C “ 32 o i | >
9 58 || | (0h)
3 25 |1 | O
Better yet: ENCODED-Tree | © £2 1 | =
\ | S
cacllcacl|cac||cac C&C ! : ®
i | ?

¢]

sTéﬁTTTTTTTTtTt?tTT f K-bit Input ®)) g
T2 SK Q_GL) Q__

38

“ENCODED”: ENcoded COmputation with Decoders EmbeddeD
(with decoding also being noisy)

S1 |compPuTE COMPUTE compuTe | | COPEWORD
— > & —> & —> & . ~ ~ ~
/| correCT |\ [corRECT CORRECT = 5181 + S282 + ...+ S8k
A \ A A
Sa| \S3 Sk /
\ A valid codeword.
Sk > Can be corrected for errors
1 -
\ % é‘% ! . A

\ ENCODED Tree g|eﬂf | |

COMPUTE & CORRECT S| 3% | .

\ C&C s | |

COMI\éCL)JITSXHON —> DEI\(IJC())IES)TNG M\ = E i
5181 + S282 C&C 2 32 " i | >
S 53 |1 | ()
g 25 | : O
Better yet: ENCODED-Tree i £2 | =
: | (0))
| : G)
cac|[cac][cac][cac C&C i ! Iy
> | @

R EIR NN LRR IR i

i =

515 ax K-bit Input Q—g) =

Moral: can overcome info loss on each link by collecting info over many links

38

“ENCODED”: ENcoded COmputation with Decoders EmbeddeD
(with decoding also being noisy)

S1 [compute COMPUTE compuTe | | COPEWORD
— > & —> & —> & . ~ ~ ~
/| correCT |\ [corRECT CORRECT = 5181 + S282 + ...+ S8k
A . A 3
Sa| .83 Sk /
\ A valid codeword.
Sk > Can be corrected for errors
1 = ®
ENCODED Tree | S

COMPUTE & CORRECT \ S| 33 | .

\ C&C s | |

COMI\éCL)JITSXHON —> DEI\(IJC())ISTNG \ m e g i
S181 T 5282 CaC caCl 25, i | >
/ : E I N I
Better yet: ENCODED-Tree / \ G g2 | | S
\ : | S
cac][cacl[cac][cac cac|[cac | | s
A i | »

: ¢ P i

tirtteteetetteetettet - =

515 ax K-bit Input D £

Q_L

Moral: can overcome info loss on each link by collecting info over many links
Reflections of a converse [Evans, Schulman 99| in our achievability 38

—NCOD

Error correction with ENCODED-Tree [Yang, Grover, Kar Allerton '14]

D vs Uncoded and Repetition

LDPC codes of sufficiently large girth can keep errors contained through repeated
error suppression

»* “ENCODED” (using LDPC codes) ~ “Uncoded”
5 \ —— Average Bt Error Rat io (Simulation) . | | | | |
------- Theoretical Lower Bound
4 \ ------- Theoretical Upper Bound
P,-
| /\ AVAVAVAVAVA
- :::::::¥:::::::¥:::::::\(:::::::¥::::::¥::::::¥::::::§r . . , ,
0O é 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16

Stage Index in the Tree Structure Stage Index in the Tree Structure

ENCODED provably requires fewer gates, and Iess(energyfthan repetition in

scaling sense [Yang, Grover, Kar IEEE Trans. Info Theory '17] Using general device

models, focusing
specifically on spintronics

Moral: repeated error-correction can fight information dissipation

Next: How do these insights apply to processors of limited memory (but > 1 gate)?
39

M x V on small (but reliable) processors

Let’s first understand M x V on reliable processors

“SUMMA”:; Scalable Universal Matrix Multiplication Algorithm
- a widely used algorithm [van de Geijn and Watts '95]

40

M x V on small (but reliable) processors

Let’s first understand M x V on reliable processors

“SUMMA”:; Scalable Universal Matrix Multiplication Algorithm
- a widely used algorithm [van de Geijn and Watts '95]

Naive M x V computation (Ax)

— the entire input vector x
| A
» . <«
S ' x
3 : =
(©
_g B Ap.1 -
L Ap |

M x V on small (but reliable) processors

Let’s first understand M x V on reliable processors

“SUMMA”:; Scalable Universal Matrix Multiplication Algorithm
- a widely used algorithm [van de Geijn and Watts '95]

SUMMA x=[x., x,, ..., X.]
X1 X2 —XC

Naive M x V computation (Ax)

— the entire input vector x
. A, Al = A

broadcast
matrix A
broadcast
matrix A

M x V on small (but reliable) processors

Let’s first understand M x V on reliable processors

“SUMMA”:; Scalable Universal Matrix Multiplication Algorithm
- a widely used algorithm [van de Geijn and Watts '95]

Naive M x V computation (AXx) SUMMA X=[X1, X2, ..., X(]

C X X X
— the entire input vector x i ©
— A1 — _’A11 | | _’A1c
@ . < Q@ <
S ¢ < S Iredrer E
—_ O) (-
= 0 =5 0© =
© X c okl |[H [H [~ g
= N P-1 E o
- AP I — 'A\r,| — — —>Arc

treew
aggregation

AX

Coded SUMMA for M x V on error-prone processors

ABFT/MDS coding
— the entire input vector x
N A
n J <
S . >
S : =
g] Ap.1 &
-] A |
_ X
> Bp. 1 =
o V)
. &
o ©
)
. BP/R -8
&)

in prep.]

Coded SUMMA for M x V on error-prone processors

ABFT/MDS coding ENCODED (using LDPC)

C — X4 — Xo — X

— the entire input vector x L ©

— A1 — | A11 |)) A1C
@ . < @ <
O y X © g
=) 5 ® S
® c oLl |[H |IH [i
_g — Ap.1 E 5 S

| Ap I F | An i — 1A
E : Pa
= x . fa. o . =
> Bp. = =
0 ®©

o

E | = - : E
. = : : i)
o ks O
S 3 [~ N o >R 3
> BP/R 8 s1 SsC S

tree é ?\qa; B
aggregation

with repeated
error correction

in prep.]

Summary of Part 1.2

What is fundamentally new in small vs large processors?

0) Memory limitations: necessitate algorithms like SUMMA
1) Errors accumulate; information dissipates

2) Decoding also error prone

Embed (noisy) decoders to repeatedly suppress errors, limiting info dissipation

42

Coded Map-reduce
Not covered in detail here, but belongs thematically
[Li-Avestimehr-Maddah-Ali 2015]
Map-reduce: A widely used framework for parallelizing a variety of

tasks
Simple to learn, very scalable

Coded Map-reduce

Not covered in detail here, but belongs thematically
[Li-Avestimehr-Maddah-Ali 2015]

Map-reduce: A widely used framework for parallelizing a variety of

tasks
« Simple to learn, very scalable

Three phases

ez Data exchange Reducel)

Third phase

Second phase

First phase (usually called shuffle)

Coded Map-reduce
Not covered in detail here, but belongs thematically
[Li-Avestimehr-Maddah-Ali 2015]
Map-reduce: A widely used framework for parallelizing a variety of

tasks
« Simple to learn, very scalable

Three phases

Map() Data exchange Reduce()

Second phase Third phase
(usually called shuffle)

First phase

|dea of coded map reduce

« Introduce redundancy in the map phase

« Exploit information theory ideas (a la coded caching) to minimize
communication cost in data exchange

e Save on overall time-to-completion by tuning correctly

Lots of follow up work, exciting area of research!

Sroader view of coded distributed computing

Conventional “division of labor” approach:
- design a “good” algorithm with low Turing complexity
- engineer deals with real world costs and imperfections

This tutorial: an information-theoretic approach:
- model system costs and imperfections and,
- derive fundamental information-theoretic limits,
- obtain optimal strategies for these models

46

Our thanks to...

Collaborators: Help with talk and slides:
- Soummya Kar - Mohammad Ali Maddah Al
- Kishori Konwar - Salman Avestimehr

- Nancy Lynch - Alex Dimakis

- Muriel Medard - Gauri Joshi

- Prakash N Moorthy - Kangwook Lee

- Peter Musial - Ramtin Pedarsani

- Zhiying Wang

Student collaborators:

- Rami Ali

- Jeremy Bai

- Malhar Chaudhari

- Sanghamitra Dutta

_ Mohammad Fahim Funding sources:

- Farzin Haddadpour National Science Foundation (NSF)
- Haewon Jeong SONIC center of the Semiconductor Research Corporation
- Yaoqing Yang

47

Appendices/

BSackup slides

48

Weak scaling:
Number of processors scales with problem size
- constant computational workload per processor

Strong scaling:

Problem size fixed!
- finding the “sweet-spot” iIn number of processors
- to0 many processors => high comm overhead
- too few => not enough parallelization

Related: gate-level errors
- error/fault-tolerant computing

49

Related problem:
Minimizing total power in communication systems

UUUUUUUUUUUU

)

il

M—| TrdiiER.

DDDDDDDD

Pr

Channel

UUUUUUU

N

i
E — M
|

AAAAAAAA

New goal: Design a P;.:q1 -efficient code

Ptotal:PT+Penc_|_Pdec

(errors only in the channel;
encoding/decoding noiseless)

50

Related problem:
Minimizing total power in communication systems

UUUUUUUUUUUUUUUUUUU
[

M Bl oia): o~
—> Ir er Channel | R F —>
e s M

New goal: Design a P;.:q1 -efficient code
(errors only in the channel;
Piotal = Pr + Pene + Paee encoding/decoding noiseless)

Circuit implementation model: Channel model:
(N 0 1 — pen 0
DY * ° &
‘ }< pen = Q (77PT>
x|~ & & o Ng
LS IRl 2 1 =2
e = 1 — Pch

50

Related problem:
Minimizing total power in communication systems

UUUUUUUUUUUUUUUUUUUU
MO

M Bl oia): o~
—> Ir er Channel | R F —>
e s M

New goal: Design a P;.:q1 -efficient code
(errors only in the channel;
Piotal = Pr + Pene + Paee encoding/decoding noiseless)

Circuit implementation model: Channel model:
(D 1 — pen
¢ *—-o ® ¢ O}< 0 (77PT>
PRpuD { | QPP p DPech = @ Ng
L) L 1 1 2
e ’ 1 — Pch

Circuit energy model: “Information-Friction” [Grover, IEEE Trans IT 2015]
| [Blake, Ph.D. thesis UToronto, 2017]
weight w

W B bits
i ° 7 °

| N
| d |
Efriction — W d Einfo—friction = U B d 50

|

Fundamental limits on total communication energy

|[Grover, IEEE Trans. Info Theory ’15]

Eenc,dec per-bit >) (

log Pi

Pr

|

for any code, and any encoding &

decoding algorithm implemented
In the circuit model

J

builds on

[El Gamal, Greene, Peng '84]
[Grover, Woyach, Sahai ’11]
[Grover, Goldsmith, Sahai ’12]
[Grover et al. ’07-15]
[Thompson '80]

51

Fundamental limits on total communication energy

|Grover, IEEE Trans. Info Theory '15]

for any code, and any encoding &

J

log = . e
Eenc.dec per-bit > (&) decoding algorithm implemented
Pr . . .
INn the circuit model
_
)
-5t
R, W,n
—_—10r f
S Ixed
al
~Z -15¢
a0
Q -20
Shannon limjt
—251 (Tx power)
-30
0 N nl_q 0:1 O.|15

Transmit power

builds on

[El Gamal, Greene, Peng '84]
[Grover, Woyach, Sahai ’11]
[Grover, Goldsmith, Sahai ’12]
[Grover et al. ’07-15]
[Thompson '80]

51

Fundamental limits on total communication energy

|Grover, IEEE Trans. Info Theory '15]

builds on
loo L) for any code, and any encoding &| [El Gamal, Greene, Peng "84]

5 ' : : Grover, Woyach, Sahai 11
Eene,dec per-bit = {2 (Y | decoding algorithm implemented [J]

P [Grover, Goldsmith, Sahai ’12]
T : : :
INn the circuit model [Grover et al. ’07-15]

/' [Thompson '80]

|

)
“IR,W,n
— 7 fixed

Shannon limjt
—251 (Tx power)

0 N NAR 0.1 0.15

Transmit power

Power (Watts) ~ x107

51

Fundamental limits on total communication energy

|Grover, IEEE Trans. Info Theory '15]

builds on
loo L) for any code, and any encoding &| [El Gamal, Greene, Peng "84]

&P, . . : [Grover, Woyach, Sahai '11]
Eene,dec per-bit = {1 (P decoding algorithm implemented | 5 over Goldsmith, Sahai *12]

INn the circuit model [Grover et al. ’07-15]
/' [Thompson ’80]

_

)
“IR,W,n
— 7 fixed

Shannon limjt
—251 (Tx power)

0 N NAR 0.1 0.15

Transmit power

Power (Watts) X107

Straightforward extension to noisy computing of invertible linear transforms
|Grover, ISIT’14]: don’t aim for “Shannon capacity of noisy computing”!

51

Short Dot Achievability

| A | AMxN
X B = 7
PxN P%) Z _ (K—M)xXN

jm

KxN

Bpy Y any square

submatrix invertible
(e.g. gen matrix of MDS code;
transposed)

K=P—-r+1

Rows of A lie in the span of any K rows of B

I-th column of Z chosen 1o set zeroes In the i-th column of B

N
Equation/variable counting gives s < F(P — K+ M)

52

Short Dot outer bound intuition

Intuition: no column can be too sparse:
can’'t have > K zeros
- since A has to be recoverable from any K rows

This argument yields a looser converse:

Converse: Any Short-Dot code satisfies:

N
> —(P—-—K+1
s> = (P—K+1)

Tighten by rank arguments (messy; happy to discuss offline)

53

