
Part 2:
Codes for distributed linear data processing

in presence of straggling/faults/errors

1

Motivation: nonideal computing systems

2

Motivation: nonideal computing systems
 M x V for 4 processors on AmazonEC2 cloud system

12
106

106

2

Motivation: nonideal computing systems

[Ack: Jeremy Bai, CUHK]

 M x V for 4 processors on AmazonEC2 cloud system

12
106

106

2

Motivation: nonideal computing systems

[Ack: Jeremy Bai, CUHK]

 M x V for 4 processors on AmazonEC2 cloud system

12
106

106

Practitioners are already using redundancy to address straggling 2

Organization: How to perform these computations?

Motivation: The critical steps for many compute applications
(Machine learning: neural nets, LDA, PCA, Regression, Projections.  
Scientific computing and physics simulations)

x

M ⇥N

N ⇥ 1

A

1.
A B

2.

efficiently, fast, in presence of faults/straggling/errors

I. Big processors [Huang, Abraham ’84]
II. Small processors [von Neumann ’56]

Rest of the tutorial is divided into two parts:

3

Part I: Big processors
 Processor memory scales with problem size

PROCESSOR
1

MASTER
NODE FUSION

NODE

PROCESSOR
2

PROCESSOR
P

X

4

System metrics
PROCESSOR

1

MASTER
NODE FUSION

NODE

PROCESSOR
2

PROCESSOR
P

X

5

System metrics
PROCESSOR

1

MASTER
NODE FUSION

NODE

PROCESSOR
2

PROCESSOR
P

X

1. Per-processor computation costs:  
 - # operations/processor

2. Straggler tolerance (directly related to “recovery threshold”)
 - max # processors that can be ignored by fusion node

3. Communication costs
 - number of bits exchanged between all processors
 - can use more sophisticated metrics. See [Bruck et al.’97]

“Efficient Algorithms for All-to-All Communications in Multiport Message-Passing Systems”  
Bruck, Ho, Kipnis, Upfal, Weathersby ‘97 5

x

M ⇥N

N ⇥ 1

AI.1

6

Parallelization for speeding up matrix-vector products

P processors (master node aggregates outputs)

Operations/processor: MN/P (e.g. P=3, each does 1/3rd computations)

M ⇥N

N ⇥ 1

. . .A1 A2

x1

x2

...

AP

xP

N/P

7

Parallelization for speeding up matrix-vector products

P processors (master node aggregates outputs)

Operations/processor: MN/P (e.g. P=3, each does 1/3rd computations)

In practice, processors can be delayed (“stragglers”) or faulty

Recovery threshold = P i.e., Straggler tolerance = 0

M ⇥N

N ⇥ 1

. . .A1 A2

x1

x2

...

AP

xP

N/P

7

Parallelization for speeding up matrix-vector products

P processors (master node aggregates outputs)

Operations/processor: MN/P (e.g. P=3, each does 1/3rd computations)

In practice, processors can be delayed (“stragglers”) or faulty

Recovery threshold = P i.e., Straggler tolerance = 0

M ⇥N

N ⇥ 1

. . .A1 A2

x1

x2

...

AP

xP

Note: can parallelize by dividing the matrix horizontally as well

N/P

7

Parallelization for speeding up matrix-vector products

P processors (master node aggregates outputs)

Operations/processor: MN/P (e.g. P=3, each does 1/3rd computations)

In practice, processors can be delayed (“stragglers”) or faulty

Recovery threshold = P i.e., Straggler tolerance = 0

Note: can parallelize by dividing the matrix horizontally as well

...
x

Â1

Â2

ÂM/P

M/P

7

Replication: repeat Job r times

N ⇥ 1

. . .A1 A2
x1

x2

...

N/P

AP

xP

8

Replication: repeat Job r times

N ⇥ 1

. . .A1 A2
x1

x2

...

N/P

AP. . .A1 A2

. . .A1 A2

...

. . .A1 A2

AP/r

AP/r

AP/r
xP/r

rN/P

8

Replication: repeat Job r times

N ⇥ 1

. . .A1 A2
x1

x2

...

N/P

AP. . .A1 A2

. . .A1 A2

...

. . .A1 A2

AP/r

AP/r

AP/r
xP/r

P processors

Straggler tolerance: r-1

operations/processor: rMN/P
Recovery threshold: P-r+1

rN/P

8

Replication: repeat Job r times

N ⇥ 1

. . .A1 A2
x1

x2

...

N/P

AP. . .A1 A2

. . .A1 A2

...

. . .A1 A2

AP/r

AP/r

AP/r
xP/r

P processors

Straggler tolerance: r-1

operations/processor: rMN/P
Recovery threshold: P-r+1

rN/P

Also see: recent works of [Joshi, Soljanin, Wornell]

8

A coding alternative to replication: MDS compute codes (“ABFT”)
Algorithm-Based Fault Tolerance
[Huang, Abraham ’84]
[Lee, Lam, Pedarsani, Papailopoulos,
Ramchandran ’16]

Computer Communications and Networks

Thomas Herault
Yves Robert Editors

Fault-Tolerance
Techniques
for High-
Performance
Computing

9

A coding alternative to replication: MDS compute codes (“ABFT”)
Algorithm-Based Fault Tolerance
[Huang, Abraham ’84]
[Lee, Lam, Pedarsani, Papailopoulos,
Ramchandran ’16]

9

A coding alternative to replication: MDS compute codes (“ABFT”)

x

N ⇥ 1

Â1

Â2

Â1 + Â2

Example: P=3, K=2

Algorithm-Based Fault Tolerance
[Huang, Abraham ’84]
[Lee, Lam, Pedarsani, Papailopoulos,
Ramchandran ’16]

9

A coding alternative to replication: MDS compute codes (“ABFT”)

x

N ⇥ 1

Â1

Â2

Â1 + Â2

Example: P=3, K=2

Algorithm-Based Fault Tolerance
[Huang, Abraham ’84]
[Lee, Lam, Pedarsani, Papailopoulos,
Ramchandran ’16]

A

9

A coding alternative to replication: MDS compute codes (“ABFT”)

x

N ⇥ 1

Â1

Â2

Â1 + Â2

Example: P=3, K=2

Algorithm-Based Fault Tolerance
[Huang, Abraham ’84]
[Lee, Lam, Pedarsani, Papailopoulos,
Ramchandran ’16]

9

A coding alternative to replication: MDS compute codes (“ABFT”)

x

N ⇥ 1

Â1

Â2

Â1 + Â2

Example: P=3, K=2

Algorithm-Based Fault Tolerance
[Huang, Abraham ’84]
[Lee, Lam, Pedarsani, Papailopoulos,
Ramchandran ’16]

Assumption: A known in advance

9

A coding alternative to replication: MDS compute codes (“ABFT”)

x

N ⇥ 1

Â1

Â2

Â1 + Â2

Example: P=3, K=2

Algorithm-Based Fault Tolerance
[Huang, Abraham ’84]
[Lee, Lam, Pedarsani, Papailopoulos,
Ramchandran ’16]

Assumption: A known in advance
Can tolerate 1 straggler  
operations per processor = MN/2

9

A coding alternative to replication: MDS compute codes (“ABFT”)

x

N ⇥ 1

Â1

Â2

Â1 + Â2

Example: P=3, K=2

Algorithm-Based Fault Tolerance
[Huang, Abraham ’84]
[Lee, Lam, Pedarsani, Papailopoulos,
Ramchandran ’16]

Assumption: A known in advance
Can tolerate 1 straggler  
operations per processor = MN/2

9

A coding alternative to replication: MDS compute codes (“ABFT”)

x

N ⇥ 1

Â1

Â2

Â1 + Â2

Example: P=3, K=2

Algorithm-Based Fault Tolerance
[Huang, Abraham ’84]
[Lee, Lam, Pedarsani, Papailopoulos,
Ramchandran ’16]

Assumption: A known in advance
Can tolerate 1 straggler  
operations per processor = MN/2

9

A coding alternative to replication: MDS compute codes (“ABFT”)

x

N ⇥ 1

Â1

Â2

Â1 + Â2

Example: P=3, K=2

Algorithm-Based Fault Tolerance
[Huang, Abraham ’84]
[Lee, Lam, Pedarsani, Papailopoulos,
Ramchandran ’16]

Assumption: A known in advance

In general, use a (P,K)-MDS code (K < M):
Recovery Threshold = K, i.e., Straggler tolerance = P-K
operations/processor = MN/K (> MN/P in uncoded)

P processors

Can tolerate 1 straggler  
operations per processor = MN/2

9

MDS coded computing of M x V outperforms replication

10

MDS coded computing of M x V outperforms replication

[Lee et al]: MDS beats replication in expected time (exponential tail models)

10

MDS coded computing of M x V outperforms replication

[Lee et al]: MDS beats replication in expected time (exponential tail models)

35%	reduc*on	

[Fig courtesy
R Pedarsani]

Experiments on AmazonEC2:
[Lee at al]

10

MDS coded computing of M x V outperforms replication

Can tradeoff # operations/processor for straggler tolerance
Codes for # operations/processor < N ?

[Lee et al]: MDS beats replication in expected time (exponential tail models)

35%	reduc*on	

[Fig courtesy
R Pedarsani]

Experiments on AmazonEC2:
[Lee at al]

10

Short-Dot codes

VERY LONG
VECTOR

SHORT AND FAT MATRIX

ILLUSTRATION OF SHORT-DOT IMPLEMENTATIONTHE MATRIX-VECTOR PRODUCT
TO BE COMPUTED PROCESSOR

1

MASTER
NODE FUSION

NODE

PROCESSOR
2

PROCESSOR
P

PARALLEL PROCESSING ARCHITECTURE

A

x

X

B
CODED MATRIX

VALUES SENT TO
PROCESSOR 1

Any sparsity pattern with
equal number of zeros in

each row, and in each column

[Dutta, Cadambe, Grover ’16]
[Tandon, Lei, Dimakis, Karampatziakis ‘16]

11

Short-Dot codes

VERY LONG
VECTOR

SHORT AND FAT MATRIX

ILLUSTRATION OF SHORT-DOT IMPLEMENTATIONTHE MATRIX-VECTOR PRODUCT
TO BE COMPUTED PROCESSOR

1

MASTER
NODE FUSION

NODE

PROCESSOR
2

PROCESSOR
P

PARALLEL PROCESSING ARCHITECTURE

A

x

X

B
CODED MATRIX

VALUES SENT TO
PROCESSOR 1

Any sparsity pattern with
equal number of zeros in

each row, and in each column

[Dutta, Cadambe, Grover ’16]
[Tandon, Lei, Dimakis, Karampatziakis ‘16]

11

Short-Dot codes

VERY LONG
VECTOR

SHORT AND FAT MATRIX

ILLUSTRATION OF SHORT-DOT IMPLEMENTATIONTHE MATRIX-VECTOR PRODUCT
TO BE COMPUTED PROCESSOR

1

MASTER
NODE FUSION

NODE

PROCESSOR
2

PROCESSOR
P

PARALLEL PROCESSING ARCHITECTURE

A

x

X

B
CODED MATRIX

VALUES SENT TO
PROCESSOR 1

Any sparsity pattern with
equal number of zeros in

each row, and in each column

[Dutta, Cadambe, Grover ’16]
[Tandon, Lei, Dimakis, Karampatziakis ‘16]

11

Short-Dot codes

Sparsity
(i) allows tradeoff between computation per-processor and straggler tolerance;
(ii) reduces communication to each processor

VERY LONG
VECTOR

SHORT AND FAT MATRIX

ILLUSTRATION OF SHORT-DOT IMPLEMENTATIONTHE MATRIX-VECTOR PRODUCT
TO BE COMPUTED PROCESSOR

1

MASTER
NODE FUSION

NODE

PROCESSOR
2

PROCESSOR
P

PARALLEL PROCESSING ARCHITECTURE

A

x

X

B
CODED MATRIX

VALUES SENT TO
PROCESSOR 1

Any sparsity pattern with
equal number of zeros in

each row, and in each column

[Dutta, Cadambe, Grover ’16]
[Tandon, Lei, Dimakis, Karampatziakis ‘16]

11

Short-Dot codes

Sparsity
(i) allows tradeoff between computation per-processor and straggler tolerance;
(ii) reduces communication to each processor

VERY LONG
VECTOR

SHORT AND FAT MATRIX

ILLUSTRATION OF SHORT-DOT IMPLEMENTATIONTHE MATRIX-VECTOR PRODUCT
TO BE COMPUTED PROCESSOR

1

MASTER
NODE FUSION

NODE

PROCESSOR
2

PROCESSOR
P

PARALLEL PROCESSING ARCHITECTURE

A

x

X

B
CODED MATRIX

VALUES SENT TO
PROCESSOR 1

Any sparsity pattern with
equal number of zeros in

each row, and in each column

[Dutta, Cadambe, Grover ’16]
[Tandon, Lei, Dimakis, Karampatziakis ‘16]

operations/processor = s < N
Recovery threshold = K = P(1-s/N)+M

11

Short-Dot codes: the construction

“Short-Dot”: Computing Large Linear Transforms Distributedly Using Coded Short Dot Products
[Dutta, Cadambe, Grover, NIPS 2016]

B

s

P ⇥N

x

N ⇥ 1

. . .

. . .

Each processor computes
a “short” dot product of x
with one row of B

Given A, an M x N matrix, M < P, and a parameter K, M < K < P,
an (s,K) Short-Dot code consists of a P x N matrix B satisfying:
 

1) A is contained in span of any K rows of B 
2) Every row of B is s-sparse

12

Achievability and outer bound

s N

P
(P �K +M)

Achievability: For any M x N matrix A, an (s, K) Short-Dot code exists s.t.:

…and outputs of any K processors suffice, i.e., Straggler tolerance = P-K

13
Proof overviews in appendices of this talk

Achievability and outer bound

s N

P
(P �K +M)

Achievability: For any M x N matrix A, an (s, K) Short-Dot code exists s.t.:

…and outputs of any K processors suffice, i.e., Straggler tolerance = P-K

Outer bound: Any Short-Dot code satisfies:

… for “sufficiently dense” A

s̄ � N

P
(P �K +M)� M2

P

✓
P

K �M + 1

◆

13
Proof overviews in appendices of this talk

Achievability and outer bound

s N

P
(P �K +M)

Achievability: For any M x N matrix A, an (s, K) Short-Dot code exists s.t.:

…and outputs of any K processors suffice, i.e., Straggler tolerance = P-K

Outer bound: Any Short-Dot code satisfies:

… for “sufficiently dense” A

s̄ � N

P

(P �K +M)� o(N)

13
Proof overviews in appendices of this talk

Short-Dot strictly and significantly outperforms  
Uncoded/Replication/ABFT (MDS)

 Exponential tail models

Paper contains expected completion time analysis for exponential service time
model, and experimental results. 
For N>>M, decoding complexity negligible compared to per-processor computation

14

Related result: Gradient coding

What if some gradient-computing workers straggle?

D1	

D2	

D3	

D4	

D5	

D6	

D7	

D8	

D9	

worker 1 worker 2 worker 3

model		β	

g1	

model		β	 model		β	

master

g2	 g3	

model		β	

add	gradients	
and	update	

model	

[Figure courtesy
 A Dimakis]

[Tandon, Lei, Dimakis, Karampatziakis’17]

15

Related result: Gradient coding

What if some gradient-computing workers straggle?

D1	

D2	

D3	

D4	

D5	

D6	

D7	

D8	

D9	

worker 1 worker 2 worker 3

model		β	

g1	

model		β	 model		β	

master

g2	 g3	

model		β	

add	gradients	
and	update	

model	

[Figure courtesy
 A Dimakis]

Want to compute:
X

i

gi = [1, 1, . . . , 1]

2

66664

g1
g2
·
·
gN

3

77775
known “matrix”

vector computed
distributedly

[Tandon, Lei, Dimakis, Karampatziakis’17]

15

Related result: Gradient coding

What if some gradient-computing workers straggle?

D1	

D2	

D3	

D4	

D5	

D6	

D7	

D8	

D9	

worker 1 worker 2 worker 3

model		β	

g1	

model		β	 model		β	

master

g2	 g3	

model		β	

add	gradients	
and	update	

model	

[Figure courtesy
 A Dimakis]

Want to compute:
X

i

gi = [1, 1, . . . , 1]

2

66664

g1
g2
·
·
gN

3

77775
known “matrix”

vector computed
distributedly

[Tandon, Lei, Dimakis, Karampatziakis’17]

15

Related result: Gradient coding

What if some gradient-computing workers straggle?
Solution: code “matrix” A (i.e., [1 1 … 1]) using a Short-Dot code  
 - introduce redundancy in datasets consistent with the Short-Dot pattern 
 - computes the correct (redundant) gradients at each processor 
Can also be viewed as a novel “distributed storage code for computation”

D1	

D2	

D3	

D4	

D5	

D6	

D7	

D8	

D9	

worker 1 worker 2 worker 3

model		β	

g1	

model		β	 model		β	

master

g2	 g3	

model		β	

add	gradients	
and	update	

model	

[Figure courtesy
 A Dimakis]

Want to compute:
X

i

gi = [1, 1, . . . , 1]

2

66664

g1
g2
·
·
gN

3

77775
known “matrix”

vector computed
distributedly

[Tandon, Lei, Dimakis, Karampatziakis’17]

15

Related result: Gradient coding

What if some gradient-computing workers straggle?
Solution: code “matrix” A (i.e., [1 1 … 1]) using a Short-Dot code  
 - introduce redundancy in datasets consistent with the Short-Dot pattern 
 - computes the correct (redundant) gradients at each processor 
Can also be viewed as a novel “distributed storage code for computation”

For VT V, coding can beat replication only due to integer effects.  
No scaling-sense gain, at least in this coarse model, over replication.  
(See also [Halbawi, Azizan-Ruhi, Salehi, Hassibi ’17])

D1	

D2	

D3	

D4	

D5	

D6	

D7	

D8	

D9	

worker 1 worker 2 worker 3

model		β	

g1	

model		β	 model		β	

master

g2	 g3	

model		β	

add	gradients	
and	update	

model	

[Figure courtesy
 A Dimakis]

Want to compute:
X

i

gi = [1, 1, . . . , 1]

2

66664

g1
g2
·
·
gN

3

77775
known “matrix”

vector computed
distributedly

[Tandon, Lei, Dimakis, Karampatziakis’17]

15

Trend:
- V x V : offers some advantage over replication

- M x V: arbitrary gains over replication, MDS coding

16

- Next: M x M: ?

Trend:
- V x V : offers some advantage over replication

- M x V: arbitrary gains over replication, MDS coding

16

- Next: M x M: ?

Answer: arbitrarily large gains over M x V-type coding!

Trend:
- V x V : offers some advantage over replication

- M x V: arbitrary gains over replication, MDS coding

16

- Next: M x M: ?

Answer: arbitrarily large gains over M x V-type coding!

Trend:
- V x V : offers some advantage over replication

- M x V: arbitrary gains over replication, MDS coding

break!

16

A B

M ⇥M M ⇥M

17

A B

M ⇥M M ⇥M

Uncoded parallelization

(i,j)-th Processor receives Ai, Bj, computes Ai x Bj, sends them to fusion center 

operations/processor = N3/mn (we’ll keep this constant across strategies)
Recovery Threshold = P; Straggler tolerance = 0

Let’s assume that each processor can store 1/m of A and 1/n of B

A1

A2

Am

B1B2 Bn

Total mn processors

N x N N x N

18

Strategy I: M x V → M x M

Recovery threshold =
operations/processor:

A2

A1

B1B2 Bn

P � P/n+m = ⇥(P)

AT

N3/mn

T = P/n

19

Each processor computes a product Ai Bj

Algorithm-based Fault Tolerance (ABFT)

[Huang, Abraham’84]
[Lee, Suh, Ramchandran’17]

IEEE TRANSACTIONS ON COMPUTERS, VOL. c-33, NO. 6, juNE 1984

in the (n + I)st row; the elements of the surnmation vector
are generated as

for 1 ' j . m.
.n

an+l,]= l aij
i=1

A
Using the notation in [21], Ac = ,where eT is a 1-by-n

vector [1"1 1 1* 1] and the vector eTA is the column
summation vector.

Definition 4.2: The row checksum matrix Ar of the matrix
A is an n-by-(m + 1) matrix which consists of the matrix A
in the first m columns and a row summation vector in the
(m + l)st column; the elements of the summation vector are
generated as

m
ai,m+l =

j=1
for 1 ' i ' n. (2)

Ar = |A Ae|, where Ae is the row summation vector.
Definition 4.3: The full checksum matrix Af of the ma-

trix A is an (n + l)-by-(m + 1) matrix, which is the column
checksum matrix of the row checksum matrix Ar.

Definition 4.4: Each row or column in the full checksum
matrix is called a checksum encoded vector and is denoted
byIC-SEV.
From the definitions, we can see that each checksum ma-

trix has its separate information matrix (A) and summation
vectors. To apply the checksum technique, each matrix is
stored in its full checksum matrix format and is manipulated
in the full, row, or column checksum matrix format de-
pending on 'the matrix operations. Five matrix operations
exist which preserve the checksum property; they are given
in the following theorems. We use the symbol "*" for both
matrix and scalar multiplication; it is clear from the context
which operation is intended.
Theorem 4.1: (i) The result of a column checksum matrix

(A.) multiplied by a row checksum rmatrix (Br) is a full check-
sum matrix (Cf). (ii) The corresponding information matrices
A, B, and C have the following relation:

A *B = C.

Proof:

A AB ABe
e eTAB eTABe

Fig. 1 depicts the checksum matrix multiplication.
LU decomposition of a matrix is a time-consuming part of

the procedure used to solve large linear equations

C*x b

where C is an n * n matrix, b is a given n * 1 vector, and x is
an unknown n * 1 vector.

If the equation C * x = b can be solved by Gaussian
elimination without pivoting, then the matrix C, with ele-
ments cij, can be decomposed into the product of a lower
triangular matrix with an upper triangular matrix

C = L * U

A X B1. C.~~~~~~~~ c

CHECKSUM lCHECKSUM l

Fig. 1. A checksum matrix multiplication.

where U = (uiik) and L = (4k) are evaluated [2] as follows:

'Ci = C~,

k+
i Ci,
= jk + l, k(Uk,])

O
li, k 1

kCi,k * (llukk)

Uk,j = k,

when i < k,
when i = k,
when i > k,
when k > j,
when k c j.

If the pivoting is required in order for the procedure to
work, then C can be factored into L and U; but, in general, they
are not triangular matrices [15].
From [21, p. 265] we get the following theorem.
Theorem 4.2: When the information matrix C is LU

decomposable, the full checksum matrix of C, Cf, can be
decomposed into a column checksum lower matrix and a row
checksum upper matrix.

Proof: Let the decomposition of C be C = LU,

C Ce
-Cf = C Ce

can be decomposed as LIUU where

LLi= - and U=|IUIUel.

Theorem 4.3: (i) The result of the addition of two full
checksum matrices (Af and Bf) is a full checksum matrix (Cf).
(ii) Their corresponding information matrices have the
relation

A +B = C. o

Corollary 4.1: The result of the addition of two CSEV's is
a CSEV.
Theorem 4.4: The product of a scalar and a full checksum

matrix is a full checksum matrix.
Corollary 4.2: The product of a scalar and a CSEV is a

CSEV.
Theorem 4.5: The transpose of a full checksum matrix is a

full checksum matrix. o
Matrix addition, multiplication, scalar product, LU

decomposition, and transpose thus preserve the check-
sum property.

A. Effecron the WordLengttgtlt wlte &uig the
Checksum Technique

Since the checksum elements are the sum of several matrix
elements, we must consider the possible problems with word

520

20

Algorithm-based Fault Tolerance (ABFT)

[Huang, Abraham’84]
[Lee, Suh, Ramchandran’17]

IEEE TRANSACTIONS ON COMPUTERS, VOL. c-33, NO. 6, juNE 1984

in the (n + I)st row; the elements of the surnmation vector
are generated as

for 1 ' j . m.
.n

an+l,]= l aij
i=1

A
Using the notation in [21], Ac = ,where eT is a 1-by-n

vector [1"1 1 1* 1] and the vector eTA is the column
summation vector.

Definition 4.2: The row checksum matrix Ar of the matrix
A is an n-by-(m + 1) matrix which consists of the matrix A
in the first m columns and a row summation vector in the
(m + l)st column; the elements of the summation vector are
generated as

m
ai,m+l =

j=1
for 1 ' i ' n. (2)

Ar = |A Ae|, where Ae is the row summation vector.
Definition 4.3: The full checksum matrix Af of the ma-

trix A is an (n + l)-by-(m + 1) matrix, which is the column
checksum matrix of the row checksum matrix Ar.

Definition 4.4: Each row or column in the full checksum
matrix is called a checksum encoded vector and is denoted
byIC-SEV.
From the definitions, we can see that each checksum ma-

trix has its separate information matrix (A) and summation
vectors. To apply the checksum technique, each matrix is
stored in its full checksum matrix format and is manipulated
in the full, row, or column checksum matrix format de-
pending on 'the matrix operations. Five matrix operations
exist which preserve the checksum property; they are given
in the following theorems. We use the symbol "*" for both
matrix and scalar multiplication; it is clear from the context
which operation is intended.
Theorem 4.1: (i) The result of a column checksum matrix

(A.) multiplied by a row checksum rmatrix (Br) is a full check-
sum matrix (Cf). (ii) The corresponding information matrices
A, B, and C have the following relation:

A *B = C.

Proof:

A AB ABe
e eTAB eTABe

Fig. 1 depicts the checksum matrix multiplication.
LU decomposition of a matrix is a time-consuming part of

the procedure used to solve large linear equations

C*x b

where C is an n * n matrix, b is a given n * 1 vector, and x is
an unknown n * 1 vector.

If the equation C * x = b can be solved by Gaussian
elimination without pivoting, then the matrix C, with ele-
ments cij, can be decomposed into the product of a lower
triangular matrix with an upper triangular matrix

C = L * U

A X B1. C.~~~~~~~~ c

CHECKSUM lCHECKSUM l

Fig. 1. A checksum matrix multiplication.

where U = (uiik) and L = (4k) are evaluated [2] as follows:

'Ci = C~,

k+
i Ci,
= jk + l, k(Uk,])

O
li, k 1

kCi,k * (llukk)

Uk,j = k,

when i < k,
when i = k,
when i > k,
when k > j,
when k c j.

If the pivoting is required in order for the procedure to
work, then C can be factored into L and U; but, in general, they
are not triangular matrices [15].
From [21, p. 265] we get the following theorem.
Theorem 4.2: When the information matrix C is LU

decomposable, the full checksum matrix of C, Cf, can be
decomposed into a column checksum lower matrix and a row
checksum upper matrix.

Proof: Let the decomposition of C be C = LU,

C Ce
-Cf = C Ce

can be decomposed as LIUU where

LLi= - and U=|IUIUel.

Theorem 4.3: (i) The result of the addition of two full
checksum matrices (Af and Bf) is a full checksum matrix (Cf).
(ii) Their corresponding information matrices have the
relation

A +B = C. o

Corollary 4.1: The result of the addition of two CSEV's is
a CSEV.
Theorem 4.4: The product of a scalar and a full checksum

matrix is a full checksum matrix.
Corollary 4.2: The product of a scalar and a CSEV is a

CSEV.
Theorem 4.5: The transpose of a full checksum matrix is a

full checksum matrix. o
Matrix addition, multiplication, scalar product, LU

decomposition, and transpose thus preserve the check-
sum property.

A. Effecron the WordLengttgtlt wlte &uig the
Checksum Technique

Since the checksum elements are the sum of several matrix
elements, we must consider the possible problems with word

520

A1

A2

A3

A4

B1 B2 B3 B4

A1B1

20

Algorithm-based Fault Tolerance (ABFT)

[Huang, Abraham’84]
[Lee, Suh, Ramchandran’17]

IEEE TRANSACTIONS ON COMPUTERS, VOL. c-33, NO. 6, juNE 1984

in the (n + I)st row; the elements of the surnmation vector
are generated as

for 1 ' j . m.
.n

an+l,]= l aij
i=1

A
Using the notation in [21], Ac = ,where eT is a 1-by-n

vector [1"1 1 1* 1] and the vector eTA is the column
summation vector.

Definition 4.2: The row checksum matrix Ar of the matrix
A is an n-by-(m + 1) matrix which consists of the matrix A
in the first m columns and a row summation vector in the
(m + l)st column; the elements of the summation vector are
generated as

m
ai,m+l =

j=1
for 1 ' i ' n. (2)

Ar = |A Ae|, where Ae is the row summation vector.
Definition 4.3: The full checksum matrix Af of the ma-

trix A is an (n + l)-by-(m + 1) matrix, which is the column
checksum matrix of the row checksum matrix Ar.

Definition 4.4: Each row or column in the full checksum
matrix is called a checksum encoded vector and is denoted
byIC-SEV.
From the definitions, we can see that each checksum ma-

trix has its separate information matrix (A) and summation
vectors. To apply the checksum technique, each matrix is
stored in its full checksum matrix format and is manipulated
in the full, row, or column checksum matrix format de-
pending on 'the matrix operations. Five matrix operations
exist which preserve the checksum property; they are given
in the following theorems. We use the symbol "*" for both
matrix and scalar multiplication; it is clear from the context
which operation is intended.
Theorem 4.1: (i) The result of a column checksum matrix

(A.) multiplied by a row checksum rmatrix (Br) is a full check-
sum matrix (Cf). (ii) The corresponding information matrices
A, B, and C have the following relation:

A *B = C.

Proof:

A AB ABe
e eTAB eTABe

Fig. 1 depicts the checksum matrix multiplication.
LU decomposition of a matrix is a time-consuming part of

the procedure used to solve large linear equations

C*x b

where C is an n * n matrix, b is a given n * 1 vector, and x is
an unknown n * 1 vector.

If the equation C * x = b can be solved by Gaussian
elimination without pivoting, then the matrix C, with ele-
ments cij, can be decomposed into the product of a lower
triangular matrix with an upper triangular matrix

C = L * U

A X B1. C.~~~~~~~~ c

CHECKSUM lCHECKSUM l

Fig. 1. A checksum matrix multiplication.

where U = (uiik) and L = (4k) are evaluated [2] as follows:

'Ci = C~,

k+
i Ci,
= jk + l, k(Uk,])

O
li, k 1

kCi,k * (llukk)

Uk,j = k,

when i < k,
when i = k,
when i > k,
when k > j,
when k c j.

If the pivoting is required in order for the procedure to
work, then C can be factored into L and U; but, in general, they
are not triangular matrices [15].
From [21, p. 265] we get the following theorem.
Theorem 4.2: When the information matrix C is LU

decomposable, the full checksum matrix of C, Cf, can be
decomposed into a column checksum lower matrix and a row
checksum upper matrix.

Proof: Let the decomposition of C be C = LU,

C Ce
-Cf = C Ce

can be decomposed as LIUU where

LLi= - and U=|IUIUel.

Theorem 4.3: (i) The result of the addition of two full
checksum matrices (Af and Bf) is a full checksum matrix (Cf).
(ii) Their corresponding information matrices have the
relation

A +B = C. o

Corollary 4.1: The result of the addition of two CSEV's is
a CSEV.
Theorem 4.4: The product of a scalar and a full checksum

matrix is a full checksum matrix.
Corollary 4.2: The product of a scalar and a CSEV is a

CSEV.
Theorem 4.5: The transpose of a full checksum matrix is a

full checksum matrix. o
Matrix addition, multiplication, scalar product, LU

decomposition, and transpose thus preserve the check-
sum property.

A. Effecron the WordLengttgtlt wlte &uig the
Checksum Technique

Since the checksum elements are the sum of several matrix
elements, we must consider the possible problems with word

520

A1

A2

A3

A4

B1 B2 B3 B4

A1B1

20

Recovery threshold:
Straggler resilience:

K = 2(m� 1)
p
P � (m� 1)2 + 1 = ⇥(

p
P)

P �K
operations/processor: N3/mn

[Lee, Suh, Ramchandran’17]

Algorithm-based Fault Tolerance (ABFT)

[Huang, Abraham’84]
[Lee, Suh, Ramchandran’17]

IEEE TRANSACTIONS ON COMPUTERS, VOL. c-33, NO. 6, juNE 1984

in the (n + I)st row; the elements of the surnmation vector
are generated as

for 1 ' j . m.
.n

an+l,]= l aij
i=1

A
Using the notation in [21], Ac = ,where eT is a 1-by-n

vector [1"1 1 1* 1] and the vector eTA is the column
summation vector.

Definition 4.2: The row checksum matrix Ar of the matrix
A is an n-by-(m + 1) matrix which consists of the matrix A
in the first m columns and a row summation vector in the
(m + l)st column; the elements of the summation vector are
generated as

m
ai,m+l =

j=1
for 1 ' i ' n. (2)

Ar = |A Ae|, where Ae is the row summation vector.
Definition 4.3: The full checksum matrix Af of the ma-

trix A is an (n + l)-by-(m + 1) matrix, which is the column
checksum matrix of the row checksum matrix Ar.

Definition 4.4: Each row or column in the full checksum
matrix is called a checksum encoded vector and is denoted
byIC-SEV.
From the definitions, we can see that each checksum ma-

trix has its separate information matrix (A) and summation
vectors. To apply the checksum technique, each matrix is
stored in its full checksum matrix format and is manipulated
in the full, row, or column checksum matrix format de-
pending on 'the matrix operations. Five matrix operations
exist which preserve the checksum property; they are given
in the following theorems. We use the symbol "*" for both
matrix and scalar multiplication; it is clear from the context
which operation is intended.
Theorem 4.1: (i) The result of a column checksum matrix

(A.) multiplied by a row checksum rmatrix (Br) is a full check-
sum matrix (Cf). (ii) The corresponding information matrices
A, B, and C have the following relation:

A *B = C.

Proof:

A AB ABe
e eTAB eTABe

Fig. 1 depicts the checksum matrix multiplication.
LU decomposition of a matrix is a time-consuming part of

the procedure used to solve large linear equations

C*x b

where C is an n * n matrix, b is a given n * 1 vector, and x is
an unknown n * 1 vector.

If the equation C * x = b can be solved by Gaussian
elimination without pivoting, then the matrix C, with ele-
ments cij, can be decomposed into the product of a lower
triangular matrix with an upper triangular matrix

C = L * U

A X B1. C.~~~~~~~~ c

CHECKSUM lCHECKSUM l

Fig. 1. A checksum matrix multiplication.

where U = (uiik) and L = (4k) are evaluated [2] as follows:

'Ci = C~,

k+
i Ci,
= jk + l, k(Uk,])

O
li, k 1

kCi,k * (llukk)

Uk,j = k,

when i < k,
when i = k,
when i > k,
when k > j,
when k c j.

If the pivoting is required in order for the procedure to
work, then C can be factored into L and U; but, in general, they
are not triangular matrices [15].
From [21, p. 265] we get the following theorem.
Theorem 4.2: When the information matrix C is LU

decomposable, the full checksum matrix of C, Cf, can be
decomposed into a column checksum lower matrix and a row
checksum upper matrix.

Proof: Let the decomposition of C be C = LU,

C Ce
-Cf = C Ce

can be decomposed as LIUU where

LLi= - and U=|IUIUel.

Theorem 4.3: (i) The result of the addition of two full
checksum matrices (Af and Bf) is a full checksum matrix (Cf).
(ii) Their corresponding information matrices have the
relation

A +B = C. o

Corollary 4.1: The result of the addition of two CSEV's is
a CSEV.
Theorem 4.4: The product of a scalar and a full checksum

matrix is a full checksum matrix.
Corollary 4.2: The product of a scalar and a CSEV is a

CSEV.
Theorem 4.5: The transpose of a full checksum matrix is a

full checksum matrix. o
Matrix addition, multiplication, scalar product, LU

decomposition, and transpose thus preserve the check-
sum property.

A. Effecron the WordLengttgtlt wlte &uig the
Checksum Technique

Since the checksum elements are the sum of several matrix
elements, we must consider the possible problems with word

520

A1

A2

A3

A4

B1 B2 B3 B4

A1B1

Next: Polynomial codes [Yu, Maddah-Ali, Avestimehr ’17]

Recovery threshold:K = mn
operations/processor: N3/mn

20

Recovery threshold:
Straggler resilience:

K = 2(m� 1)
p
P � (m� 1)2 + 1 = ⇥(

p
P)

P �K
operations/processor: N3/mn

[Lee, Suh, Ramchandran’17]

Polynomial codes [Yu, Maddah-Ali, Avestimehr ’17]
Intuition: forget matrices for this slide

21

Polynomial codes [Yu, Maddah-Ali, Avestimehr ’17]
Intuition: forget matrices for this slide

{Ai} {Bj}

21

Polynomial codes [Yu, Maddah-Ali, Avestimehr ’17]
Intuition: forget matrices for this slide

{Ai} {Bj}

PROC 1

PROC 2

PROC P

21

Polynomial codes [Yu, Maddah-Ali, Avestimehr ’17]
Intuition: forget matrices for this slide

{Ai} {Bj}

PROC 1

PROC 2

PROC P

AiBjGOAL: Compute all products of the form

21

Polynomial codes [Yu, Maddah-Ali, Avestimehr ’17]
Intuition: forget matrices for this slide

{Ai} {Bj}

PROC 1

PROC 2

PROC P

WANTS ALL 'S

DECODER

AiBj

AiBjGOAL: Compute all products of the form

21

Polynomial codes [Yu, Maddah-Ali, Avestimehr ’17]
Intuition: forget matrices for this slide

{Ai} {Bj}

PROC 1

PROC 2

PROC P

WANTS ALL 'S

DECODER

AiBj

Constraints:
1) Can only send information of size of one Ai and one Bj
2) Processor can only compute a product of its inputs

AiBjGOAL: Compute all products of the form

21

Solution:
Send and

X

i

�iAi

X

i

�iBi

Polynomial codes [Yu, Maddah-Ali, Avestimehr ’17]
Intuition: forget matrices for this slide

{Ai} {Bj}

PROC 1

PROC 2

PROC P

WANTS ALL 'S

DECODER

AiBj

Constraints:
1) Can only send information of size of one Ai and one Bj
2) Processor can only compute a product of its inputs

AiBjGOAL: Compute all products of the form

21

Polynomial codes [Yu, Maddah-Ali, Avestimehr ’17]
Intuition: forget matrices for this slide

{Ai} {Bj}

PROC 1

PROC 2

PROC P

WANTS ALL 'S

DECODER

AiBj

Constraints:
1) Can only send information of size of one Ai and one Bj
2) Processor can only compute a product of its inputs

Solution:
Send and

X

i

�ipAi

X

i

�ipBi

AiBjGOAL: Compute all products of the form

21

Polynomial codes [Yu, Maddah-Ali, Avestimehr ’17]
Intuition: forget matrices for this slide

{Ai} {Bj}

PROC 1

PROC 2

PROC P

WANTS ALL 'S

DECODER

AiBj

{Ai}mi=1 {Bj}ni=1

Constraints:
1) Can only send information of size of one Ai and one Bj
2) Processor can only compute a product of its inputs

Solution:
Send and

X

i

�ipAi

X

i

�ipBi

AiBjGOAL: Compute all products of the form

21

Achievability
You can use random codes.
But “polynomial codes” get you there with lower enc/dec complexity

Proc i computes C̃i = ÃiB̃i = A1B1 + iA2B1 + i2A1B2 + i3A2B2

PROC 1

PROC i

PROC P

DECODER

A1 + 1.A2

A1 + P.A2

A1 + i.A2

B1 + i2.B2

B1 + 12.B2

B1 + P 2.B2

{A1,A2}
{B1,B2}

22

Example:
m=2, n=2

Achievability
You can use random codes.
But “polynomial codes” get you there with lower enc/dec complexity

Proc i computes C̃i = ÃiB̃i = A1B1 + iA2B1 + i2A1B2 + i3A2B2

Fusion center needs outputs from only 4 such processors! e.g. from 1,2,3,4:
2

664

C̃1

C̃2

C̃3

C̃4

3

775 =

2

664

10 11 12 13

20 21 22 23

30 31 32 33

40 41 42 43

3

775

2

664

A1B1

A2B1

A1B2

A2B2

3

775
Invert a Vandermonde matrix

PROC 1

PROC i

PROC P

DECODER

A1 + 1.A2

A1 + P.A2

A1 + i.A2

B1 + i2.B2

B1 + 12.B2

B1 + P 2.B2

{A1,A2}
{B1,B2}

22

Example:
m=2, n=2

Achievability
You can use random codes.
But “polynomial codes” get you there with lower enc/dec complexity

Proc i computes C̃i = ÃiB̃i = A1B1 + iA2B1 + i2A1B2 + i3A2B2

Fusion center needs outputs from only 4 such processors! e.g. from 1,2,3,4:
2

664

C̃1

C̃2

C̃3

C̃4

3

775 =

2

664

10 11 12 13

20 21 22 23

30 31 32 33

40 41 42 43

3

775

2

664

A1B1

A2B1

A1B2

A2B2

3

775
Invert a Vandermonde matrix

In general, Recovery Threshold = mn (attained using RS-code-type construction)

PROC 1

PROC i

PROC P

DECODER

A1 + 1.A2

A1 + P.A2

A1 + i.A2

B1 + i2.B2

B1 + 12.B2

B1 + P 2.B2

{A1,A2}
{B1,B2}

22

Example:
m=2, n=2

Summary so far…

- V x V : Coding offers little advantage over replication
- M x V: Short-Dot codes provide arbitrary gains over replication, MDS coding,
- M x M: polynomial coding provides arbitrary gains over M x V codes

What additional costs come with coding?
- encoding and decoding complexity (skipped here for simplicity)
- Next: degradation is not graceful as you pull deadline earlier

To see this, let’s look a problem with repeated M x V, and slow convergence to solution

23

Understanding a limitation of coding:
Coding for linear iterative solutions

Power-iterations converge to PageRank solution

x

(l+1)
= (1� d)Ax

(l)
+ dr.

Converges to x

⇤ satisfying x

⇤
= (1� d)Ax

⇤
+ dr.

Subtracting, e(l+1)
= (1� d)Ae

(l), where e

(l)
= x

(l) � x

⇤.

0 20 40 60 80
Number of iterations

10-15

10-10

10-5

100

Av
er

ag
e

M
ea

n
Sq

ua
re

d
Er

ro
r Convergence of PageRank using power-iteration

8 / 17

computation inputMxV

“Coding Method for Parallel Iterative Linear Solver,” Y Yang, P Grover, S Kar, Submitted 24

Understanding a limitation of coding:
Coding for linear iterative solutions

Power-iterations converge to PageRank solution

x

(l+1)
= (1� d)Ax

(l)
+ dr.

Converges to x

⇤ satisfying x

⇤
= (1� d)Ax

⇤
+ dr.

Subtracting, e(l+1)
= (1� d)Ae

(l), where e

(l)
= x

(l) � x

⇤.

0 20 40 60 80
Number of iterations

10-15

10-10

10-5

100

Av
er

ag
e

M
ea

n
Sq

ua
re

d
Er

ro
r Convergence of PageRank using power-iteration

8 / 17

Power-iterations converge to PageRank solution

x

(l+1)
= (1� d)Ax

(l)
+ dr.

Converges to x

⇤ satisfying x

⇤
= (1� d)Ax

⇤
+ dr.

Subtracting, e(l+1)
= (1� d)Ae

(l), where e

(l)
= x

(l) � x

⇤.

0 20 40 60 80
Number of iterations

10-15

10-10

10-5

100

Av
er

ag
e

M
ea

n
Sq

ua
re

d
Er

ro
r Convergence of PageRank using power-iteration

8 / 17

computation inputMxV

“Coding Method for Parallel Iterative Linear Solver,” Y Yang, P Grover, S Kar, Submitted 24

Understanding a limitation of coding:
Coding for linear iterative solutions

Power-iterations converge to PageRank solution

x

(l+1)
= (1� d)Ax

(l)
+ dr.

Converges to x

⇤ satisfying x

⇤
= (1� d)Ax

⇤
+ dr.

Subtracting, e(l+1)
= (1� d)Ae

(l), where e

(l)
= x

(l) � x

⇤.

0 20 40 60 80
Number of iterations

10-15

10-10

10-5

100

Av
er

ag
e

M
ea

n
Sq

ua
re

d
Er

ro
r Convergence of PageRank using power-iteration

8 / 17

Power-iterations converge to PageRank solution

x

(l+1)
= (1� d)Ax

(l)
+ dr.

Converges to x

⇤ satisfying x

⇤
= (1� d)Ax

⇤
+ dr.

Subtracting, e(l+1)
= (1� d)Ae

(l), where e

(l)
= x

(l) � x

⇤.

0 20 40 60 80
Number of iterations

10-15

10-10

10-5

100

Av
er

ag
e

M
ea

n
Sq

ua
re

d
Er

ro
r Convergence of PageRank using power-iteration

8 / 17

computation inputMxV

“Coding Method for Parallel Iterative Linear Solver,” Y Yang, P Grover, S Kar, Submitted

Next: how to code multiple linear iterative problems in parallel

24

Understanding a limitation of coding:
Coding for linear iterative solutions

Power-iterations converge to PageRank solution

x

(l+1)
= (1� d)Ax

(l)
+ dr.

Converges to x

⇤ satisfying x

⇤
= (1� d)Ax

⇤
+ dr.

Subtracting, e(l+1)
= (1� d)Ae

(l), where e

(l)
= x

(l) � x

⇤.

0 20 40 60 80
Number of iterations

10-15

10-10

10-5

100

Av
er

ag
e

M
ea

n
Sq

ua
re

d
Er

ro
r Convergence of PageRank using power-iteration

8 / 17

Power-iterations converge to PageRank solution

x

(l+1)
= (1� d)Ax

(l)
+ dr.

Converges to x

⇤ satisfying x

⇤
= (1� d)Ax

⇤
+ dr.

Subtracting, e(l+1)
= (1� d)Ae

(l), where e

(l)
= x

(l) � x

⇤.

0 20 40 60 80
Number of iterations

10-15

10-10

10-5

100

Av
er

ag
e

M
ea

n
Sq

ua
re

d
Er

ro
r Convergence of PageRank using power-iteration

8 / 17

computation inputMxV

“Coding Method for Parallel Iterative Linear Solver,” Y Yang, P Grover, S Kar, Submitted

Next: how to code multiple linear iterative problems in parallel

24

linear inx

⇤ r

Solving multiple iterative problems in parallelClassical coded computation applied to personalized

PageRank

N
=

Worker 1 Worker 2 Worker 3

=

(Encoding)

(Parallel
Computing)

(Decoding)

[r1,r2]
G

s1 s2 s3

y1 y2 y3
(l1) (l2) (l3)

Y
(Tdl)

X

N G
[[-1

I Initialize (Encoding)

[s1, . . . , sP] = [r1, . . . , rk] ·Gk⇥P .

I Parallel Computing:
li power iterations at the i-th
worker with input si

Y

(T
dl

)
N⇥P = [y

(l1)
1 , . . . ,y

(lP)
P].

I Post Processing (Decoding) Matrix
inversion on fastest k processors.

b
X

>
=

˜

G

�1
(Y

(T
dl

)
)

>.

9 / 17

Classical coded computation applied to linear iterative problems

25

Solving multiple iterative problems in parallelClassical coded computation applied to personalized

PageRank

N
=

Worker 1 Worker 2 Worker 3

=

(Encoding)

(Parallel
Computing)

(Decoding)

[r1,r2]
G

s1 s2 s3

y1 y2 y3
(l1) (l2) (l3)

Y
(Tdl)

X

N G
[[-1

I Initialize (Encoding)

[s1, . . . , sP] = [r1, . . . , rk] ·Gk⇥P .

I Parallel Computing:
li power iterations at the i-th
worker with input si

Y

(T
dl

)
N⇥P = [y

(l1)
1 , . . . ,y

(lP)
P].

I Post Processing (Decoding) Matrix
inversion on fastest k processors.

b
X

>
=

˜

G

�1
(Y

(T
dl

)
)

>.

9 / 17

Classical coded computation applied to linear iterative problems

Is this invertible?
Is this well conditioned?

25

Solving multiple iterative problems in parallelClassical coded computation applied to personalized

PageRank

N
=

Worker 1 Worker 2 Worker 3

=

(Encoding)

(Parallel
Computing)

(Decoding)

[r1,r2]
G

s1 s2 s3

y1 y2 y3
(l1) (l2) (l3)

Y
(Tdl)

X

N G
[[-1

I Initialize (Encoding)

[s1, . . . , sP] = [r1, . . . , rk] ·Gk⇥P .

I Parallel Computing:
li power iterations at the i-th
worker with input si

Y

(T
dl

)
N⇥P = [y

(l1)
1 , . . . ,y

(lP)
P].

I Post Processing (Decoding) Matrix
inversion on fastest k processors.

b
X

>
=

˜

G

�1
(Y

(T
dl

)
)

>.

9 / 17

Classical coded computation applied to linear iterative problems

Is this invertible?
Is this well conditioned?

Yes!

25

Solving multiple iterative problems in parallelClassical coded computation applied to personalized

PageRank

N
=

Worker 1 Worker 2 Worker 3

=

(Encoding)

(Parallel
Computing)

(Decoding)

[r1,r2]
G

s1 s2 s3

y1 y2 y3
(l1) (l2) (l3)

Y
(Tdl)

X

N G
[[-1

I Initialize (Encoding)

[s1, . . . , sP] = [r1, . . . , rk] ·Gk⇥P .

I Parallel Computing:
li power iterations at the i-th
worker with input si

Y

(T
dl

)
N⇥P = [y

(l1)
1 , . . . ,y

(lP)
P].

I Post Processing (Decoding) Matrix
inversion on fastest k processors.

b
X

>
=

˜

G

�1
(Y

(T
dl

)
)

>.

9 / 17

Classical coded computation applied to linear iterative problems

Is this invertible?
Is this well conditioned?

Yes!
No!

25

Classical coded computation on for personalized

PageRank: errors blow up!

Decoding: bX>
=

˜

G

�1
(Y

(T
dl

)
)

>.

I e.g. 120 processors; 100 PageRank
problems.

I Decode using fastest 100 processors.

I Decoding matrix is ill-conditioned
w.h.p.) errors are blown up at small
deadlines!

0 10 20 30
Computation deadline Tdl (sec)

10-15

10-10

10-5

100

105

Av
er

ag
e

m
ea

n-
sq

ua
re

d
er

ro
r

Google Plus graph
Original coded

 method in [Lee et al.]

Extension of coded
 method in [Lee et al.]

10 / 17

Natural extension of
ABFT

ABFT

Experiments on CMU clusters:

What is the effect of a poor conditioning number?
Error blows up!

26

Classical coded computation on for personalized

PageRank: errors blow up!

Decoding: bX>
=

˜

G

�1
(Y

(T
dl

)
)

>.

I e.g. 120 processors; 100 PageRank
problems.

I Decode using fastest 100 processors.

I Decoding matrix is ill-conditioned
w.h.p.) errors are blown up at small
deadlines!

0 10 20 30
Computation deadline Tdl (sec)

10-15

10-10

10-5

100

105

Av
er

ag
e

m
ea

n-
sq

ua
re

d
er

ro
r

Google Plus graph
Original coded

 method in [Lee et al.]

Extension of coded
 method in [Lee et al.]

10 / 17

Natural extension of
ABFT

ABFT

Experiments on CMU clusters:

What is the effect of a poor conditioning number?
Error blows up!

26

Classical coded computation on for personalized

PageRank: errors blow up!

Decoding: bX>
=

˜

G

�1
(Y

(T
dl

)
)

>.

I e.g. 120 processors; 100 PageRank
problems.

I Decode using fastest 100 processors.

I Decoding matrix is ill-conditioned
w.h.p.) errors are blown up at small
deadlines!

0 10 20 30
Computation deadline Tdl (sec)

10-15

10-10

10-5

100

105

Av
er

ag
e

m
ea

n-
sq

ua
re

d
er

ro
r

Google Plus graph
Original coded

 method in [Lee et al.]

Extension of coded
 method in [Lee et al.]

10 / 17

Natural extension of
ABFT

ABFT

Experiments on CMU clusters:

What is the effect of a poor conditioning number?
Error blows up!

Similar issues arise in designing good “analog coding with erasures”  
 [Haikin, Zamir ISIT’16][Haikin, Zamir, Gavish ‘17] 26

A graceful degradation with time:
Coded computing with weighted least squares

Proposed algorithm: weighted combination of processor

outputs

N
=

Worker 1 Worker 2 Worker 3

=
Decoding

Matrix

[[
-1 [[

-1[[-1

{ =

(Encoding)

(Parallel
Computing)

(Decoding)

[r1,r2]
G

s1 s2 s3

y1 y2 y3
(l1) (l2) (l3)

Y
(Tdl)

X

N

G GT
GT

I Initialize (Encoding)

[s1, . . . , sP] = [r1, . . . , rk] ·G.

I Parallel Computing:
li power iterations at the i-th
worker with input si

Y

(T
dl

)
N⇥P = [y

(l1)
1 , . . . ,y

(lP)
P].

I Post Processing (Decoding)

b
X

>
= (G⇤

�1
G

>
)

�1
G⇤

�1
(Y

(T
dl

)
)

>.

Similar to the “weighted
least-square” solution.

12 / 1727

9

0 5 10 15 20 25 30
Computation deadline Tdl (sec)

10-15

10-10

10-5

100

105
Av

er
ag

e
m

ea
n-

sq
ua

re
d

er
ro

r

Comparison between Algorithm 1
 and [6] on Gplus graph

Algorithm 1

Original coded
 method in [6]

Extension of coded
 method in [6]

Fig. 3. Experimental comparison between an extended version of the
algorithm in [6] and Algorithm 1 on the Google Plus graph. The figure shows
that naively extending the general coded computing in [6] using matrix inverse
increases the computation error.

0 0.5 1 1.5 2
Computation deadline Tdl (sec)

10-5

100

Av
er

ag
e

m
ea

n-
sq

ua
re

d
er

ro
r

Comparison of Different
 Codes on Twitter graph

DFT
Random binary
Random sparse
Gaussian

Fig. 4. Experimental comparison of four different codes on the Twitter graph.
In this experiment the DFT-code out-performs the other candidates in mean
squared error.

coded PageRank uses n workers to solve these k = 100

equations using Algorithm 1. We use a (120, 100) code where
the generator matrix is the submatrix composed of the first
100 rows in a 120⇥120 DFT matrix. The computation results
are shown in Fig. 2. Note that the two graphs of different
sizes so the computation in the two experiments takes different
time. From Fig. 2, we can see that the mean-squared error of
uncoded and replication-based schemes is larger than that of
coded computation by a factor of 104.

We also compare Algorithm 1 with the coded computing
algorithm proposed in [6]. The original algorithm proposed
in [6] is not designed for iterative algorithms, but it has a
natural extension to the case of computing before a deadline.
Fig. 3 shows the comparison between the performance of
Algorithm 1 and this extension of the algorithm from [6].
This extension uses the results from the k fastest workers
to retrieve the required PageRank solutions. More concretely,
suppose S ⇢ [n] is the index set of the k fastest workers.
Then, this extension retrieves the solutions to the original k

0 10 20 30
Computation deadline Tdl (sec)

10-15

10-10

10-5

100

Av
er

ag
e

m
ea

n-
sq

ua
re

d
er

ro
r Correlated queries on Google Plus graph

Replication 1

Uncoded

Replication 2
Coded

Fig. 5. Experimentally computed overall mean squared error of uncoded,
replication-based and coded personalized PageRank on the Twitter graph on
a cluster with 120 workers. The queries are generated using the model from
the stationary model in Assumption 2.

PageRank problems by solving the following equation:

YS = [x⇤
1

,x⇤
2

, . . . ,x⇤
k] ·GS , (64)

where YS is the computation results obtained from the fastest
k workers and GS is the k ⇥ k submatrix composed of
the columns in the generator matrix G with indexes in S .
However, since there is some remaining error at each worker
(i.e., the computation results YS have not converged yet),
when conducting the matrix-inverse-based decoding from [6],
the error is magnified due to the large condition number of GS .
This is why the algorithm in [6] cannot be naively applied in
the coded PageRank problem.

Finally, we test Algorithm 2 for correlated PageRank queries
that are distributed with the stationary covariance matrix in the
form of (36) and (37). Note that the only change to be made
in this case is on the ⇤ matrix (see equation (38)). The other
settings are exactly the same as the experiments that are shown
in Figure 2. The results on the Twitter social graph are shown
in Figure 4. In this case, we also have to compute

One question remains: what is the best code design for the
coded linear inverse algorithm? Although we do not have a
concrete answer to this question, we have tested different codes
(with different generator matrices G) in the Twitter graph
experiment, all using Algorithm 1. The results are shown in
Fig. 3 (right). The generator matrix used for the “binary” curve
has i.i.d. binary entries in {�1, 1}. The generator matrix used
for the “sparse” curve has random binary sparse entries. The
generator matrix for the “Gaussian” curve has i.i.d. standard
Gaussian entries. In this experiment, the DFT-code performs
the best. However, finding the best code in general is a
meaningful future work.

B. Simulations

We also test the coded PageRank algorithm in a simulated
setup with randomly generated graphs and worker response
times. These simulations help us understand looseness in
our theoretical bounding techniques. They can also test the
performance of the coded Algorithm for different distributions.
We simulate Algorithm 1 on a randomly generated Erdös-
Rényi graph with N = 500 nodes and connection probability
0.1. The number of workers n is set to be 240 and the number
of PageRank vectors k is set to be 200. We use the first

ABFT

Natural extension of
ABFT

Weighted least squares

Weighted least squares outperforms competition;
Degrades gracefully with early deadline

28

Summary thus far…

ABFT Coded computation ⇢
6=

New codes, new problems, new analyses,
converses

But, we need to be careful in lit-searching ABFT literature

Next: small processors

29

Break!

Questions/comments?
Your favorite computation problem?

Preview of Part II: Small Processors

Controlling error propagation with small processors/gates
 - No central processor to distribute/aggregate
 

Encoding/decoding also have errors

30

Part II: “Small processors”

has so far received relatively less attention

31

What are small processors?

1) Logic gates

2) Analog “Nanofunctions” and beyond CMOS devices

3) Processors with limited memory (i.e., ALL processors are small!)
 - can’t assume that processor memory increases with problem size

Synthesize large reliable computations using small processors?

0 2 4 6 8 10 12 14 16 18 20
0.66

0.68

0.7

0.72

Time [s]

V
ou

t [V
]

Desired Vout = 0.685 V

GDOT = 0.697 V GDOT = 0.697 V

CH1 = OFF
CH2 = OFF

ON

OFF

ON

ON

OFF

ON

ON

ON

ON

OFF
OFF

OFF

OFF

OFF
OFF

ON

0 100 200
10

-2

10
-1

10
0

τ [ns]

E
n
e
rg

y
/o

p
 [
p
J
]

ȕ = 4

ȕ = 2.1 ȕ = 1.1

ȕ = 1.1, 2.1, 4

0 100 200

0

5

10

15

τ [ns]

E
rr

o
r

[%
]

0 100 200
τ [ns]

ȕ = 4

ȕ = 2.1

ȕ = 1.1

GDOT CMOS

ȕ = 4

ȕ = 2.1

ȕ = 1.1

(a) (b)

Fig. 1. Schematics of graphene dot product (GDOT) operation. (a) Input pulse
weights. (b) Dot-product kernel transistor-level schematic. (c) Ideal output voltage.

Fig. 2. GDOT vs. CMOS SAC simulation (L=
180 nm, W=1 µm) for (a) Ĳ = 200 ns and (b) 20 ns.

Fig. 3. Simulated % Error vs. Ĳ for different input
voltage ranges for (a) GDOT and (b) CMOS dot
product implementation.

Fig. 4. Signal-to-Noise Ratio [SNR=(Vdesired/ı)2]
vs. Ĳ for (a) GDOT and (b) CMOS dot product
implementation.

Fig. 5. Energy per operation
[Ĳop = 5Ĳ] vs. Ĳ.

Fig. 8. Measured Vout vs.
time (V1 = 0.665 V, p1 =
0.7, V2 = 0.7321 V, p2 =
0.3). CH 1 and CH 2 refer
to manually triggered
pulse generator outputs.

Fig. 6. (a) Wafer-scale (4”) GDOT fabrication. (b) Optical image of
prototype 4-input L = 1 µm GDOT. Only 2-input (bold) used due to
test equipment limitations. (c) Representative GFET cross section [4].

Fig. 7. Pulsed device resistance [RD] vs.
top-gate bias [VTG] (symbols) and model
fit (lines) for fabricated GFETs [T = 10
ȝs, TON = 3 ȝs, TRise = TFall = 200 ns].

Table 1. Values extracted
from VS Model fit [3] for
GFETs connected to IN1 (i.e.
p1, V1) and IN2 (i.e. p2, V2).

 ȕ = max(Vi)
 /min(Vi).

Fig. 9. Measured (a) Vout and (b) % Error
vs. input-weight, with Vpp = 0.6, 1.2, 1.8 V.

Fig. 10. (a) Vout vs. V2 with V1 = 0.665 V. (b) % error vs. ȕ. (c) Behavioral model
describing 2-input GDOT output with p = p1.

CMOS

GDOT

0.6

0.8

1

V
ou

t [V
]

Vout vs. t – Gaussian Blur Filter (ı2 = 0.85)

Ĳ = (100 kȍ)(2 pF) = 200 ns

0 0.2 0.4 0.6 0.8 1
0.6

0.8

1

Time [µs]

V
ou

t [V
]

GDOT

GDOT

CMOS

CMOS

Ĳ = (10 kȍ)(2 pF) = 20 ns

(a)

(b)

R’

C’

ĭ1

ĭ2

ĭN

V1

V2

VN

Vout

ĭ1(t)

ĭN(t)

ĭ2(t)

t

TON,1
T

t

TON,2

t

TON,3
t

R’C’ ب max(T,ĲGFET)

V(t)
V1

V2

VN

Vout

out i i
i

=¦VV p

(a) (b) (c)

O
i

N,i=
T

p
T

Vx

0 0.5 1

0.8

0.9

1

Vpp

V1 = 1.025 V
V2 = 0.732 V

0 0.5 1
0

5

10

Vpp

(a) (b)

E
rr

o
r

[%
]

V
o

u
t [

V
]

p1 p1

0.2 0.4 0.6 0.8 1

0.4

0.6

0.8

1

V
2
 [V]

0 5
0

20

40

60

80

V1

(a) (b)

Measured

SPICE

(c)

V
o
u

t [
V

]

E
rr

o
r

[%
]

ȕ

0 100 200
τ [ns]

0 100 200
10

2

10
4

10
6

10
8

τ [ns]

ȕ = 4 ȕ = 2.1

ȕ = 1.1

GDOT CMOS

ȕ = 4

ȕ = 2.1

ȕ = 1.1

(a) (b)

S
N

R

GFET IN1 IN2

ȝ
[cm2V-1s-1]

960 1370

RC,elec

[kȍ-ȝm]
1.3 0.8

RC,hole

[kȍ-ȝm]
1.6 0.9

-2 0 2
0

2

4

6

8

10

VTG [V]

R
D
 [k

Ω
-µ

m
]

VD =1.2 V
VBG = 5 V
L = 1.5 µm

CH 1

CH 2

RHL= 1.50

RHL= 1.86

MIT VS Fit

0 2 4 6 8 10 12 14 16 18 20
0.66

0.68

0.7

0.72

Time [s]

V
ou

t [V
]

Desired Vout = 0.685 V

GDOT = 0.697 V GDOT = 0.697 V

CH1 = OFF
CH2 = OFF

ON

OFF

ON

ON

OFF

ON

ON

ON

ON

OFF
OFF

OFF

OFF

OFF
OFF

ON

0 100 200
10

-2

10
-1

10
0

τ [ns]

E
n
e
rg

y
/o

p
 [
p
J
]

ȕ = 4

ȕ = 2.1 ȕ = 1.1

ȕ = 1.1, 2.1, 4

0 100 200

0

5

10

15

τ [ns]

E
rr

o
r

[%
]

0 100 200
τ [ns]

ȕ = 4

ȕ = 2.1

ȕ = 1.1

GDOT CMOS

ȕ = 4

ȕ = 2.1

ȕ = 1.1

(a) (b)

Fig. 1. Schematics of graphene dot product (GDOT) operation. (a) Input pulse
weights. (b) Dot-product kernel transistor-level schematic. (c) Ideal output voltage.

Fig. 2. GDOT vs. CMOS SAC simulation (L=
180 nm, W=1 µm) for (a) Ĳ = 200 ns and (b) 20 ns.

Fig. 3. Simulated % Error vs. Ĳ for different input
voltage ranges for (a) GDOT and (b) CMOS dot
product implementation.

Fig. 4. Signal-to-Noise Ratio [SNR=(Vdesired/ı)2]
vs. Ĳ for (a) GDOT and (b) CMOS dot product
implementation.

Fig. 5. Energy per operation
[Ĳop = 5Ĳ] vs. Ĳ.

Fig. 8. Measured Vout vs.
time (V1 = 0.665 V, p1 =
0.7, V2 = 0.7321 V, p2 =
0.3). CH 1 and CH 2 refer
to manually triggered
pulse generator outputs.

Fig. 6. (a) Wafer-scale (4”) GDOT fabrication. (b) Optical image of
prototype 4-input L = 1 µm GDOT. Only 2-input (bold) used due to
test equipment limitations. (c) Representative GFET cross section [4].

Fig. 7. Pulsed device resistance [RD] vs.
top-gate bias [VTG] (symbols) and model
fit (lines) for fabricated GFETs [T = 10
ȝs, TON = 3 ȝs, TRise = TFall = 200 ns].

Table 1. Values extracted
from VS Model fit [3] for
GFETs connected to IN1 (i.e.
p1, V1) and IN2 (i.e. p2, V2).

 ȕ = max(Vi)
 /min(Vi).

Fig. 9. Measured (a) Vout and (b) % Error
vs. input-weight, with Vpp = 0.6, 1.2, 1.8 V.

Fig. 10. (a) Vout vs. V2 with V1 = 0.665 V. (b) % error vs. ȕ. (c) Behavioral model
describing 2-input GDOT output with p = p1.

CMOS

GDOT

0.6

0.8

1

V
ou

t [V
]

Vout vs. t – Gaussian Blur Filter (ı2 = 0.85)

Ĳ = (100 kȍ)(2 pF) = 200 ns

0 0.2 0.4 0.6 0.8 1
0.6

0.8

1

Time [µs]

V
ou

t [V
]

GDOT

GDOT

CMOS

CMOS

Ĳ = (10 kȍ)(2 pF) = 20 ns

(a)

(b)

R’

C’

ĭ1

ĭ2

ĭN

V1

V2

VN

Vout

ĭ1(t)

ĭN(t)

ĭ2(t)

t

TON,1
T

t

TON,2

t

TON,3
t

R’C’ ب max(T,ĲGFET)

V(t)
V1

V2

VN

Vout

out i i
i

=¦VV p

(a) (b) (c)

O
i

N,i=
T

p
T

Vx

0 0.5 1

0.8

0.9

1

Vpp

V1 = 1.025 V
V2 = 0.732 V

0 0.5 1
0

5

10

Vpp

(a) (b)

E
rr

o
r

[%
]

V
o

u
t [

V
]

p1 p1

0.2 0.4 0.6 0.8 1

0.4

0.6

0.8

1

V
2
 [V]

0 5
0

20

40

60

80

V1

(a) (b)

Measured

SPICE

(c)

V
o
u

t [
V

]

E
rr

o
r

[%
]

ȕ

0 100 200
τ [ns]

0 100 200
10

2

10
4

10
6

10
8

τ [ns]

ȕ = 4 ȕ = 2.1

ȕ = 1.1

GDOT CMOS

ȕ = 4

ȕ = 2.1

ȕ = 1.1

(a) (b)

S
N

R

GFET IN1 IN2

ȝ
[cm2V-1s-1]

960 1370

RC,elec

[kȍ-ȝm]
1.3 0.8

RC,hole

[kȍ-ȝm]
1.6 0.9

-2 0 2
0

2

4

6

8

10

VTG [V]

R
D
 [k

Ω
-µ

m
]

VD =1.2 V
VBG = 5 V
L = 1.5 µm

CH 1

CH 2

RHL= 1.50

RHL= 1.86

MIT VS Fit

e.g. Dot product “nanofunction” in graphene
[Pop, Shanbhag, Blaauw labs ’15-’16]

32

What is fundamentally new in small processor computing?
1) Errors accumulate; information dissipates

a) Info-dissipation in noisy circuits:

 D
binary
inputs

error probability
of binary output

✏

33

What is fundamentally new in small processor computing?
1) Errors accumulate; information dissipates

Noisy circuits
built with noisy gates

a) Info-dissipation in noisy circuits:

 D
binary
inputs

error probability
of binary output

✏

33

What is fundamentally new in small processor computing?
1) Errors accumulate; information dissipates

Noisy circuits
built with noisy gates

a) Info-dissipation in noisy circuits:

 D
binary
inputs

error probability
of binary output

✏

33

What is fundamentally new in small processor computing?
1) Errors accumulate; information dissipates

Noisy circuits
built with noisy gates

a) Info-dissipation in noisy circuits:

 D
binary
inputs

error probability
of binary output

✏

33

What is fundamentally new in small processor computing?
1) Errors accumulate; information dissipates

Noisy circuits
built with noisy gates

a) Info-dissipation in noisy circuits:

 D
binary
inputs

error probability
of binary output

✏

X � Y � Z
BSC(✏)

33

What is fundamentally new in small processor computing?
1) Errors accumulate; information dissipates

Noisy circuits
built with noisy gates

a) Info-dissipation in noisy circuits:

 D
binary
inputs

error probability
of binary output

✏

X � Y � Z
BSC(✏)

“Strong” Data-Processing Inequality
I(X;Z)

I(X;Y)
 f(✏) < 1

[Pippenger ’88]
[Evans, Schulman ’99][Erkip, Cover ’98]
[Polayanskiy, Wu ’14]
[Anantharam, Gohari, Nair, Kamath ’14]
[Raginsky ’14]

Classical Data-Processing Inequality
I(X;Z)

I(X;Y)
 1

33

What is fundamentally new in small processor computing?
1) Errors accumulate; information dissipates

Noisy circuits
built with noisy gates

a) Info-dissipation in noisy circuits:

 D
binary
inputs

error probability
of binary output

✏

X � Y � Z
BSC(✏)

“Strong” Data-Processing Inequality
I(X;Z)

I(X;Y)
 f(✏) < 1

[Pippenger ’88]
[Evans, Schulman ’99][Erkip, Cover ’98]
[Polayanskiy, Wu ’14]
[Anantharam, Gohari, Nair, Kamath ’14]
[Raginsky ’14]

Classical Data-Processing Inequality
I(X;Z)

I(X;Y)
 1

1x

2x

3x

1 1)(q w x

2 2)(q w x

3 3)(q w x

4xest
4()q y

6x

7x

est
5()q y

est est est
0 4 5))((q q+=y y y

1 1 2 2
est
4) ()(wq w q= +x xy

3 3 4 4)(w wq+ +x x

5x

Sink�

b) Distortion accumulation with quantization noise
(e.g. in “data summarization”, consensus, etc.)

33

What is fundamentally new in small processor computing?
1) Errors accumulate; information dissipates

Noisy circuits
built with noisy gates

a) Info-dissipation in noisy circuits:

 D
binary
inputs

error probability
of binary output

✏

X � Y � Z
BSC(✏)

“Strong” Data-Processing Inequality
I(X;Z)

I(X;Y)
 f(✏) < 1

[Pippenger ’88]
[Evans, Schulman ’99][Erkip, Cover ’98]
[Polayanskiy, Wu ’14]
[Anantharam, Gohari, Nair, Kamath ’14]
[Raginsky ’14]

Classical Data-Processing Inequality
I(X;Z)

I(X;Y)
 1

1x

2x

3x

1 1)(q w x

2 2)(q w x

3 3)(q w x

4xest
4()q y

6x

7x

est
5()q y

est est est
0 4 5))((q q+=y y y

1 1 2 2
est
4) ()(wq w q= +x xy

3 3 4 4)(w wq+ +x x

5x

Sink�

b) Distortion accumulation with quantization noise
(e.g. in “data summarization”, consensus, etc.)

2

() 2
1
log
2

i
i PN i

i

R
D
σ

→ ≥ S

2
1/2

() 2
1
log ()
2

i
i PN i i

i

R O D
D
σ

→ ≥ −
Δ

S

An application of cut-set bound:
[Cuff, Su, El Gamal ’09]

Incremental-distortion bound:
[Yang, Grover, Kar IEEE Trans IT’17]

33

What is fundamentally new in small processor computing?
1) Errors accumulate; information dissipates

Noisy circuits
built with noisy gates

a) Info-dissipation in noisy circuits:

 D
binary
inputs

error probability
of binary output

✏

X � Y � Z
BSC(✏)

“Strong” Data-Processing Inequality
I(X;Z)

I(X;Y)
 f(✏) < 1

[Pippenger ’88]
[Evans, Schulman ’99][Erkip, Cover ’98]
[Polayanskiy, Wu ’14]
[Anantharam, Gohari, Nair, Kamath ’14]
[Raginsky ’14]

Classical Data-Processing Inequality
I(X;Z)

I(X;Y)
 1

1x

2x

3x

1 1)(q w x

2 2)(q w x

3 3)(q w x

4xest
4()q y

6x

7x

est
5()q y

est est est
0 4 5))((q q+=y y y

1 1 2 2
est
4) ()(wq w q= +x xy

3 3 4 4)(w wq+ +x x

5x

Sink�

b) Distortion accumulation with quantization noise
(e.g. in “data summarization”, consensus, etc.)

2

() 2
1
log
2

i
i PN i

i

R
D
σ

→ ≥ S

2
1/2

() 2
1
log ()
2

i
i PN i i

i

R O D
D
σ

→ ≥ −
Δ

S

An application of cut-set bound:
[Cuff, Su, El Gamal ’09]

Incremental-distortion bound:
[Yang, Grover, Kar IEEE Trans IT’17]

tighter by an unbounded factor
33

What is fundamentally new in small processor computing?

2) Decoding, and possibly encoding, also error prone

Error-prone decoding (often message-passing for LDPCs)
[Taylor ‘67][Hadjicostis, Verghese ’05][Vasic et al. ’07-’13][Varshney ’11][Grover, Palaiyanur, Sahai ’10]  
[Huang, Yao, Dolecek ’14][Gross et al. ’13][Vasic et al.’16]

Error-prone encoding [Yang, Grover, Kar ’14][Dupraz et al. ’15]
 - see also erasure version [Hachem, Wang, Fragouli, Diggavi ‘13]

Can we compute M x V reliably using error-prone gates? Is it even possible?

We’ll next discuss this for 1) Gates; 2) Processors

Essential to analyze decoding/encoding costs in noisy computation:
 there may be no conceptual analog of Shannon capacity in computing problems
 [Grover et al.’07-’15][Grover ISIT’14][Blake, Kschischang ’15,’16]

1) Errors accumulate; information dissipates

34

M x V on noisy gates: the basics

Output Input Linear transform

[r1, r2, . . . , rK] = [s1, s2, . . . , sL]

2

4 A

3

5

L⇥K

35

M x V on noisy gates: the basics

Output Input Linear transform

[r1, r2, . . . , rK] = [s1, s2, . . . , sL]

2

4 A

3

5

L⇥K

[x1, x2, . . . , xN] = [s1, s2, . . . , sL]

2

4
A

3

5

L⇥K

2

4 IK⇥K |P

3

5

K⇥NCoded
output Systematic

generator matrix

Input G

35

M x V on noisy gates: the basics

Output Input Linear transform

[r1, r2, . . . , rK] = [s1, s2, . . . , sL]

2

4 A

3

5

L⇥K

[x1, x2, . . . , xN] = [s1, s2, . . . , sL]

2

4
A

3

5

L⇥K

2

4 IK⇥K |P

3

5

K⇥NCoded
output Systematic

generator matrix

Input G

eG : coded generator matrix

35

M x V on noisy gates: the basics

Output Input Linear transform

[r1, r2, . . . , rK] = [s1, s2, . . . , sL]

2

4 A

3

5

L⇥K

Note: rows of are also codewords of !eG G

[x1, x2, . . . , xN] = [s1, s2, . . . , sL]

2

4
A

3

5

L⇥K

2

4 IK⇥K |P

3

5

K⇥NCoded
output Systematic

generator matrix

Input G

eG : coded generator matrix

35

M x V on noisy gates: the basics

Output Input Linear transform

[r1, r2, . . . , rK] = [s1, s2, . . . , sL]

2

4 A

3

5

L⇥K

Note: rows of are also codewords of !eG G

[x1, x2, . . . , xN] = [s1, s2, . . . , sL]

2

4
A

3

5

L⇥K

2

4 IK⇥K |P

3

5

K⇥NCoded
output Systematic

generator matrix

Input G

eG : coded generator matrix

Decoding: use parity-check matrix H for G
Encoded computation: multiply with eGs

35

M x V on noisy gates: the basics

Output Input Linear transform

[r1, r2, . . . , rK] = [s1, s2, . . . , sL]

2

4 A

3

5

L⇥K

Note: rows of are also codewords of !eG G

[x1, x2, . . . , xN] = [s1, s2, . . . , sL]

2

4
A

3

5

L⇥K

2

4 IK⇥K |P

3

5

K⇥NCoded
output Systematic

generator matrix

Input G

eG : coded generator matrix

Decoding: use parity-check matrix H for G
Encoded computation: multiply with eGs

PRECOMPUTED
NOISELESSLY

35

A difficulty with this approach: error propagation

x = s

e
G

Naive computation of requires computing
xi =

X

j

sjgji

36

A difficulty with this approach: error propagation

x = s

e
G

Naive computation of requires computing
xi =

X

j

sjgji

s1
g1j

s2
g2j gLj

sL

36

A difficulty with this approach: error propagation

x = s

e
G

Naive computation of requires computing

Requiring L AND gates, L-1 XOR gates

Error accumulates! As L→ ∞ , each approaches a random coin flip xi

xi =
X

j

sjgji

s1
g1j

s2
g2j gLj

sL

36

∼
∼

∼

∼

Addressing error accumulation:
a simple observation

x = sG = [s1, s2, . . . , sk]

2

6666664

���g1 ���
���g2 ���

.

.

.
���gk ���

3

7777775
Codeword

generator
matrix

source
sequence

37

∼
∼

∼

∼

Addressing error accumulation:
a simple observation

x = sG = [s1, s2, . . . , sk]

2

6666664

���g1 ���
���g2 ���

.

.

.
���gk ���

3

7777775
Codeword

generator
matrix

source
sequence

∼ ∼ ∼= s1g1 + s2g2 + . . .+ skgk

37

∼
∼

∼

∼

Addressing error accumulation:
a simple observation

x = sG = [s1, s2, . . . , sk]

2

6666664

���g1 ���
���g2 ���

.

.

.
���gk ���

3

7777775
Codeword

generator
matrix

source
sequence

∼ ∼ ∼= s1g1 + s2g2 + . . .+ skgk

A valid codeword.
Can be corrected for errors

37

∼
∼

∼

∼

Addressing error accumulation:
a simple observation

x = sG = [s1, s2, . . . , sk]

2

6666664

���g1 ���
���g2 ���

.

.

.
���gk ���

3

7777775
Codeword

generator
matrix

source
sequence

∼ ∼ ∼= s1g1 + s2g2 + . . .+ skgk

Any correctly computed partial sum is a valid codeword

A valid codeword.
Can be corrected for errors

37

∼
∼

∼

∼

Addressing error accumulation:
a simple observation

x = sG = [s1, s2, . . . , sk]

2

6666664

���g1 ���
���g2 ���

.

.

.
���gk ���

3

7777775
Codeword

generator
matrix

source
sequence

∼ ∼ ∼= s1g1 + s2g2 + . . .+ skgk

Any correctly computed partial sum is a valid codeword
- possibly correct compute errors by embedding decoders inside encoder
- Use LDPC codes: utilize results on noisy decoding  

(we used [Tabatabaei, Cho, Dolecek ’14])

A valid codeword.
Can be corrected for errors

37

“ENCODED”: ENcoded COmputation with Decoders EmbeddeD
(with decoding also being noisy)

COMPUTE
&

CORRECT

sk1

s1 COMPUTE
&

CORRECT

s2 s3 sk

COMPUTE
&

CORRECT

CODEWORD

38

“ENCODED”: ENcoded COmputation with Decoders EmbeddeD
(with decoding also being noisy)

COMPUTE
&

CORRECT

sk1

s1 COMPUTE
&

CORRECT

s2 s3 sk

COMPUTE
&

CORRECT

CODEWORD

NOISY
COMPUTATION

COMPUTE & CORRECT

NOISY
DECODING

s1g1 + s2g2

38

“ENCODED”: ENcoded COmputation with Decoders EmbeddeD
(with decoding also being noisy)

COMPUTE
&

CORRECT

sk1

s1 COMPUTE
&

CORRECT

s2 s3 sk

COMPUTE
&

CORRECT

CODEWORD

∼ ∼ ∼= s1g1 + s2g2 + . . .+ skgk

NOISY
COMPUTATION

COMPUTE & CORRECT

NOISY
DECODING

s1g1 + s2g2

38

“ENCODED”: ENcoded COmputation with Decoders EmbeddeD
(with decoding also being noisy)

COMPUTE
&

CORRECT

sk1

s1 COMPUTE
&

CORRECT

s2 s3 sk

COMPUTE
&

CORRECT

CODEWORD

∼ ∼ ∼= s1g1 + s2g2 + . . .+ skgk

A valid codeword.
Can be corrected for errors

NOISY
COMPUTATION

COMPUTE & CORRECT

NOISY
DECODING

s1g1 + s2g2

38

“ENCODED”: ENcoded COmputation with Decoders EmbeddeD
(with decoding also being noisy)

COMPUTE
&

CORRECT

sk1

s1 COMPUTE
&

CORRECT

s2 s3 sk

COMPUTE
&

CORRECT

CODEWORD

∼ ∼ ∼= s1g1 + s2g2 + . . .+ skgk

A valid codeword.
Can be corrected for errors

Better yet: ENCODED-Tree

NOISY
COMPUTATION

COMPUTE & CORRECT

NOISY
DECODING

s1g1 + s2g2

38

“ENCODED”: ENcoded COmputation with Decoders EmbeddeD
(with decoding also being noisy)

COMPUTE
&

CORRECT

sk1

s1 COMPUTE
&

CORRECT

s2 s3 sk

COMPUTE
&

CORRECT

CODEWORD

∼ ∼ ∼= s1g1 + s2g2 + . . .+ skgk

A valid codeword.
Can be corrected for errors

p re
g

p lim

St
ag

e
in

de
x

C&C C&C C&C C&C C&C C&C C&C C&CC&C

C&CC&CC&C

C&C
ENCODED Tree

D
codewords

Better yet: ENCODED-Tree

NOISY
COMPUTATION

COMPUTE & CORRECT

NOISY
DECODING

s1g1 + s2g2

38

“ENCODED”: ENcoded COmputation with Decoders EmbeddeD
(with decoding also being noisy)

COMPUTE
&

CORRECT

sk1

s1 COMPUTE
&

CORRECT

s2 s3 sk

COMPUTE
&

CORRECT

CODEWORD

∼ ∼ ∼= s1g1 + s2g2 + . . .+ skgk

A valid codeword.
Can be corrected for errors

p re
g

p lim

St
ag

e
in

de
x

C&C C&C C&C C&C C&C C&C C&C C&CC&C

C&CC&CC&C

C&C
ENCODED Tree

D
codewords

Better yet: ENCODED-Tree

NOISY
COMPUTATION

COMPUTE & CORRECT

NOISY
DECODING

s1g1 + s2g2

Fi
g.

1.
(a

)
sh

ow
s

a
co

m
pu

te
-a

nd
-c

or
re

ct
st

ru
ct

ur
e.

(b
)

sh
ow

s
th

e
no

is
y

en
co

di
ng

tre
e.

D
ur

in
g

th
e

en
co

di
ng

pr
oc

es
s,

th
e

bi
te

rr
or

ra
te

is
bo

un
de

d
be

tw
ee

n
tw

o
co

ns
ta

nt
s
p

re
g

an
d
p

lim
sh

ow
n

in
(c

).
Th

e
bi

te
rr

or
ra

te
ev

ol
ut

io
n

in
on

e
em

be
dd

ed
de

co
de

r
is

sh
ow

n
in

(d
).

nu
m

be
r

of
co

m
pu

ta
tio

ns
re

qu
ire

d
pe

r
bi

t
C
b

m
us

t
be

at
le

as
t

Ω
(l

o
g
1
/
p

ta
r

lo
g
1
/
ϵ
),

w
he

re
ϵ

is
th

e
er

ro
r

pr
ob

ab
ili

ty
of

no
is

y
ga

te
s.

Pr
oo

f.
Se

e
A

pp
en

di
x

C
.

Re
m

ar
k

1.
Si

nc
e

ea
ch

co
m

pu
ta

tio
n

co
ns

um
es

a
ce

rta
in

am
ou

nt
of

po
w

er
,t

he
pr

oc
es

si
ng

po
w

er
ca

nn
ot

re
m

ai
n

bo
un

de
d

w
he

n
th

e
er

ro
r

pr
ob

ab
ili

ty
p t

ar
ap

pr
oa

ch
es

ze
ro

.T
hi

s
cl

ai
m

is
co

n-
si

st
en

tw
ith

th
e

re
ce

nt
re

su
lt

th
at

Sh
an

no
n

w
at

er
fa

ll
cu

rv
e

do
es

no
th

ol
d

w
he

n
de

co
di

ng
po

w
er

is
co

ns
id

er
ed

[1
3]

.
In

th
e

ne
xt

se
ct

io
n,

w
e

w
ill

bu
ild

a
no

is
y

en
co

de
rw

ith
no

is
y

de
co

de
rs

em
be

dd
ed

in
to

it,
w

hi
ch

ac
hi

ev
es

P
bi

t
e

sm
al

le
r

th
an

p t
ar

an
d

co
m

pl
ex

ity
C
b

of
th

e
or

de
rO

(l
og

1/
p t

ar
).

Th
e

ac
hi

ev
ed

ra
te

is
al

so
an

al
yz

ed
.

II
I.

N
O

IS
Y

E
N

C
O

D
IN

G
W

IT
H

E
M

B
E

D
D

E
D

D
E

C
O

D
E

R
S

In
pa

rt
II

I-
A

,w
e

pr
ov

id
e

th
e

co
ns

tru
ct

io
n

of
a

no
is

y
en

co
de

r
th

at
m

ee
ts

th
e

lo
w

er
bo

un
d

in
Th

eo
re

m
1.

W
ith

in
ou

rp
ro

bl
em

fo
rm

ul
at

io
n,

th
e

en
co

de
rw

ith
em

be
dd

ed
de

co
de

rs
m

ay
ad

dr
es

s
lim

ita
tio

ns
of

so
m

e
ot

he
rn

at
ur

al
st

ra
te

gi
es

,w
hi

ch
is

ex
pl

ai
ne

d
in

pa
rt

II
I-

B
.T

he
m

ai
n

th
eo

re
m

,w
hi

ch
pr

ov
id

es
th

e
en

co
de

r
co

ns
tru

ct
io

n,
is

gi
ve

n
in

Se
ct

io
n

IV
.

A.
Th

e
N

oi
sy

En
co

de
r

C
on

st
ru

ct
io

n
an

d
W

or
ki

ng
Pr

in
ci

pl
es

Th
e

no
is

y
en

co
de

r
st

ru
ct

ur
e

is
sh

ow
n

in
Fi

g.
1(

b)
.

W
e

us
e

a
D

-b
ra

nc
h

tre
e

w
ith

de
pt

h
M

to
do

th
e

en
co

di
ng

.
Th

e
m

es
sa

ge
s
=

(s
1
,.
..
s K

)
is

in
pu

t
fr

om
th

e
le

af
no

de
s.

Th
e

ou
tp

ut
x
=

sG
=

(x
1
,.
..
x
N
)

is
ca

lc
ul

at
ed

fr
om

bo
tto

m
to

to
p

an
d

fin
al

ly
ob

ta
in

ed
at

th
e

ro
ot

.I
n

th
e
M

-th
le

ve
l,

i.e
.,

th
e

bo
tto

m
le

ve
l,

th
e

fir
st
K

le
af

no
de

s
ha

ve
ro

w
s

of
th

e
ge

ne
ra

to
r

m
at

rix
g
1

to
g
K

st
or

ed
in

th
em

.A
t

th
e

st
ar

t
of

th
e

en
co

di
ng

pr
oc

es
s,

th
e
k

-th
no

de
of

th
e

fir
st

K
no

de
s

ca
lc

ul
at

es
s k

·g
T k

us
in

g
N

no
is

y
A

N
D

ga
te

s
an

d
st

or
es

it
as

an
in

te
rm

ed
ia

te
re

su
lt.

Th
e

re
m

ai
ni

ng
D

M
−
1
−

K
le

af
no

de
s

st
or

e
al

l-z
er

o
co

de
w

or
ds

as
in

te
rm

ed
ia

te
re

su
lts

.
In

th
e

up
pe

r
le

ve
ls

,
ea

ch
no

de
pe

rf
or

m
s

a
co

m
po

ne
nt

-w
is

e
X

O
R

-o
pe

ra
tio

n
of

th
e
D

in
te

rm
ed

ia
te

re
su

lts
fr

om
D

ch
ild

re
n-

no
de

s.
Th

er
ef

or
e,

if
no

ga
te

er
ro

rs
oc

cu
r,

th
e

ro
ot

ge
ts

th
e

th
e

bi
na

ry
su

m
of

al
l

s k
·g

T k
,

w
hi

ch
is

th
e

co
rr

ec
t

co
de

w
or

d
x
=

sG
.

H
ow

ev
er

,
in

or
de

r
to

de
al

w
ith

er
ro

rs
ca

us
ed

by
no

is
y

ga
te

s,
ea

ch
no

n-
le

af
tre

e
no

de
is

ch
an

ge
d

to
a

co
m

pu
te

-a
nd

-c
or

re
ct

un
it

sh
ow

n
in

Fi
g.

1(
a)

,c
on

st
itu

te
d

by
2E

D
-f

an
-in

no
is

y
X

O
R

ga
te

s,
an

A
lg

or
ith

m
1

N
oi

sy
En

co
di

ng
IN

PU
T:

M
es

sa
ge

bi
ts

s=
(s

1
,s

2
,.
..
s K

).
O

U
TP

U
T:

C
ha

nn
el

in
pu

tb
its

x
=

(x
1
,x

2
,.
..
x
N
).

IN
IT

IA
LI

ZE
W

rit
e
s l

·g
T l

in
th

e
re

gi
st

er
s

of
vl M

,
1
≤

l
≤

K
.

W
rit

e
0
T

in
th

e
re

gi
st

er
s

of
ot

he
r

no
de

s.
C

op
y

ea
ch

ve
ct

or
to

2E
bi

ts
an

d
st

or
e

th
em

as
th

e
fir

st
la

ye
r

of
in

te
rm

ed
ia

te
re

su
lts

x̃
l M

,
1
≤

l
≤

D
M

−
1
.

FO
R

m
fr

om
M

−
1

to
1

•
Ea

ch
no

de
vl m

ca
lc

ul
at

es
th

e
X

O
R

of
th

e
ou

tp
ut

s
fr

om
its

D
ch

ild
re

n-
no

de
s

an
d

w
rit

e
th

e
re

su
lt

in
th

e
2E

-b
it

re
gi

st
er

.

x̃
l m

=
⊕

v
∈
D
(v

l m
)

x̃
v
,1

≤
l
≤

D
m

−
1
;

(1
0)

•
Ea

ch
no

de
vl m

pe
rf

or
m

s
C

ite
ra

tio
ns

of
th

e
m

es
sa

ge
-

pa
ss

in
g

de
co

di
ng

.
EN

D
C

ha
ng

e
th

e
2E

-b
it

ve
ct

or
x̃
1 1

ba
ck

to
th

e
N

-b
it

co
de

w
or

d
x
1 1
.

O
ut

pu
tx

1 1
.

2E
-b

it
re

gi
st

er
an

d
a

se
pa

ra
te

G
al

la
ge

r
B

de
co

de
r,

w
he

re
E

is
th

e
nu

m
be

r
of

ed
ge

s
in

th
e

LD
PC

bi
pa

rti
te

gr
ap

h.
Ea

ch
re

gi
st

er
st

or
es

2E
bi

ts
in

st
ea

d
of

N
bi

ts
,b

ec
au

se
th

e
nu

m
be

r
of

m
es

sa
ge

s
du

rin
g

ea
ch

G
al

la
ge

r
B

de
co

di
ng

op
er

at
io

n
is

2E
.

W
e

st
or

e
th

es
e
2E

bi
ts

as
in

te
rm

ed
ia

te
re

su
lts

in
st

ea
d

of
st

or
in

g
th

e
N

-b
it

co
de

w
or

d.
N

ot
e

th
at

by
st

or
in

g
th

es
e

2E
bi

ts
,

th
e

co
rr

es
po

nd
in

g
co

de
w

or
d

is
st

or
ed

as
w

el
l.

Th
e

no
is

y
X

O
R

ga
te

s
ar

e
us

ed
to

pe
rf

or
m

th
e

co
m

po
ne

nt
-w

is
e

X
O

R
-o

pe
ra

tio
n

of
th

e
in

te
rm

ed
ia

te
re

su
lts

w
hi

ch
ar

e
D

·2
E

bi
ts

fr
om

D
ch

ild
re

n
no

de
s.

Th
e

no
is

y
G

al
la

ge
r

B
de

co
de

r
is

us
ed

to
co

rr
ec

te
rr

or
s

in
th

e
as

so
ci

at
ed

re
gi

st
er

af
te

rt
he

X
O

R
-

op
er

at
io

n.
B

ef
or

e
se

nd
in

g
th

e
ou

tp
ut

to
th

e
pa

re
nt

-n
od

e,
ea

ch
no

de
pe

rf
or

m
s
C

ite
ra

tio
ns

of
th

e
m

es
sa

ge
-p

as
si

ng
de

co
di

ng
w

ith
th

e
em

be
dd

ed
de

co
de

r.
W

e
w

ill
sh

ow
th

at
it

su
ffi

ce
s

to
us

e
C

=3
.

In
th

e
no

is
y

de
co

de
r,

th
e

er
ro

r
pr

ob
ab

ili
ty

fo
llo

w
s

th
e

de
ns

ity
ev

ol
ut

io
n
p(

i+
1
)
<

f
(p

(i
))

w
he

re
i

is
th

e
ite

ra
tio

n
in

de
x

an
d

th
e

ex
pl

ic
it

ex
pr

es
si

on
of

fu
nc

tio
n
f
(·)

is
gi

ve
n

in
Th

eo
re

m
3.

Th
is

ev
ol

ut
io

n
is

ill
us

tra
te

d
in

Fi
g.

1(
d)

.
In

th
e

en
co

di
ng

pr
oc

es
s,

th
e

X
O

R
-o

pe
ra

tio
ns

in
tro

du
ce

er
ro

rs
,w

hi
le

th
e

G
al

la
ge

rB
de

co
di

ng
pr

oc
es

ss
up

pr
es

se
st

he
m

.

38

“ENCODED”: ENcoded COmputation with Decoders EmbeddeD
(with decoding also being noisy)

COMPUTE
&

CORRECT

sk1

s1 COMPUTE
&

CORRECT

s2 s3 sk

COMPUTE
&

CORRECT

CODEWORD

∼ ∼ ∼= s1g1 + s2g2 + . . .+ skgk

A valid codeword.
Can be corrected for errors

p re
g

p lim

St
ag

e
in

de
x

C&C C&C C&C C&C C&C C&C C&C C&CC&C

C&CC&CC&C

C&C
ENCODED Tree

D
codewords

Better yet: ENCODED-Tree

NOISY
COMPUTATION

COMPUTE & CORRECT

NOISY
DECODING

s1g1 + s2g2

Fi
g.

1.
(a

)
sh

ow
s

a
co

m
pu

te
-a

nd
-c

or
re

ct
st

ru
ct

ur
e.

(b
)

sh
ow

s
th

e
no

is
y

en
co

di
ng

tre
e.

D
ur

in
g

th
e

en
co

di
ng

pr
oc

es
s,

th
e

bi
te

rr
or

ra
te

is
bo

un
de

d
be

tw
ee

n
tw

o
co

ns
ta

nt
s
p

re
g

an
d
p

lim
sh

ow
n

in
(c

).
Th

e
bi

te
rr

or
ra

te
ev

ol
ut

io
n

in
on

e
em

be
dd

ed
de

co
de

r
is

sh
ow

n
in

(d
).

nu
m

be
r

of
co

m
pu

ta
tio

ns
re

qu
ire

d
pe

r
bi

t
C
b

m
us

t
be

at
le

as
t

Ω
(l

o
g
1
/
p

ta
r

lo
g
1
/
ϵ
),

w
he

re
ϵ

is
th

e
er

ro
r

pr
ob

ab
ili

ty
of

no
is

y
ga

te
s.

Pr
oo

f.
Se

e
A

pp
en

di
x

C
.

Re
m

ar
k

1.
Si

nc
e

ea
ch

co
m

pu
ta

tio
n

co
ns

um
es

a
ce

rta
in

am
ou

nt
of

po
w

er
,t

he
pr

oc
es

si
ng

po
w

er
ca

nn
ot

re
m

ai
n

bo
un

de
d

w
he

n
th

e
er

ro
r

pr
ob

ab
ili

ty
p t

ar
ap

pr
oa

ch
es

ze
ro

.T
hi

s
cl

ai
m

is
co

n-
si

st
en

tw
ith

th
e

re
ce

nt
re

su
lt

th
at

Sh
an

no
n

w
at

er
fa

ll
cu

rv
e

do
es

no
th

ol
d

w
he

n
de

co
di

ng
po

w
er

is
co

ns
id

er
ed

[1
3]

.
In

th
e

ne
xt

se
ct

io
n,

w
e

w
ill

bu
ild

a
no

is
y

en
co

de
rw

ith
no

is
y

de
co

de
rs

em
be

dd
ed

in
to

it,
w

hi
ch

ac
hi

ev
es

P
bi

t
e

sm
al

le
r

th
an

p t
ar

an
d

co
m

pl
ex

ity
C
b

of
th

e
or

de
rO

(l
og

1/
p t

ar
).

Th
e

ac
hi

ev
ed

ra
te

is
al

so
an

al
yz

ed
.

II
I.

N
O

IS
Y

E
N

C
O

D
IN

G
W

IT
H

E
M

B
E

D
D

E
D

D
E

C
O

D
E

R
S

In
pa

rt
II

I-
A

,w
e

pr
ov

id
e

th
e

co
ns

tru
ct

io
n

of
a

no
is

y
en

co
de

r
th

at
m

ee
ts

th
e

lo
w

er
bo

un
d

in
Th

eo
re

m
1.

W
ith

in
ou

rp
ro

bl
em

fo
rm

ul
at

io
n,

th
e

en
co

de
rw

ith
em

be
dd

ed
de

co
de

rs
m

ay
ad

dr
es

s
lim

ita
tio

ns
of

so
m

e
ot

he
rn

at
ur

al
st

ra
te

gi
es

,w
hi

ch
is

ex
pl

ai
ne

d
in

pa
rt

II
I-

B
.T

he
m

ai
n

th
eo

re
m

,w
hi

ch
pr

ov
id

es
th

e
en

co
de

r
co

ns
tru

ct
io

n,
is

gi
ve

n
in

Se
ct

io
n

IV
.

A.
Th

e
N

oi
sy

En
co

de
r

C
on

st
ru

ct
io

n
an

d
W

or
ki

ng
Pr

in
ci

pl
es

Th
e

no
is

y
en

co
de

r
st

ru
ct

ur
e

is
sh

ow
n

in
Fi

g.
1(

b)
.

W
e

us
e

a
D

-b
ra

nc
h

tre
e

w
ith

de
pt

h
M

to
do

th
e

en
co

di
ng

.
Th

e
m

es
sa

ge
s
=

(s
1
,.
..
s K

)
is

in
pu

t
fr

om
th

e
le

af
no

de
s.

Th
e

ou
tp

ut
x
=

sG
=

(x
1
,.
..
x
N
)

is
ca

lc
ul

at
ed

fr
om

bo
tto

m
to

to
p

an
d

fin
al

ly
ob

ta
in

ed
at

th
e

ro
ot

.I
n

th
e
M

-th
le

ve
l,

i.e
.,

th
e

bo
tto

m
le

ve
l,

th
e

fir
st
K

le
af

no
de

s
ha

ve
ro

w
s

of
th

e
ge

ne
ra

to
r

m
at

rix
g
1

to
g
K

st
or

ed
in

th
em

.A
t

th
e

st
ar

t
of

th
e

en
co

di
ng

pr
oc

es
s,

th
e
k

-th
no

de
of

th
e

fir
st

K
no

de
s

ca
lc

ul
at

es
s k

·g
T k

us
in

g
N

no
is

y
A

N
D

ga
te

s
an

d
st

or
es

it
as

an
in

te
rm

ed
ia

te
re

su
lt.

Th
e

re
m

ai
ni

ng
D

M
−
1
−

K
le

af
no

de
s

st
or

e
al

l-z
er

o
co

de
w

or
ds

as
in

te
rm

ed
ia

te
re

su
lts

.
In

th
e

up
pe

r
le

ve
ls

,
ea

ch
no

de
pe

rf
or

m
s

a
co

m
po

ne
nt

-w
is

e
X

O
R

-o
pe

ra
tio

n
of

th
e
D

in
te

rm
ed

ia
te

re
su

lts
fr

om
D

ch
ild

re
n-

no
de

s.
Th

er
ef

or
e,

if
no

ga
te

er
ro

rs
oc

cu
r,

th
e

ro
ot

ge
ts

th
e

th
e

bi
na

ry
su

m
of

al
l

s k
·g

T k
,

w
hi

ch
is

th
e

co
rr

ec
t

co
de

w
or

d
x
=

sG
.

H
ow

ev
er

,
in

or
de

r
to

de
al

w
ith

er
ro

rs
ca

us
ed

by
no

is
y

ga
te

s,
ea

ch
no

n-
le

af
tre

e
no

de
is

ch
an

ge
d

to
a

co
m

pu
te

-a
nd

-c
or

re
ct

un
it

sh
ow

n
in

Fi
g.

1(
a)

,c
on

st
itu

te
d

by
2E

D
-f

an
-in

no
is

y
X

O
R

ga
te

s,
an

A
lg

or
ith

m
1

N
oi

sy
En

co
di

ng
IN

PU
T:

M
es

sa
ge

bi
ts

s=
(s

1
,s

2
,.
..
s K

).
O

U
TP

U
T:

C
ha

nn
el

in
pu

tb
its

x
=

(x
1
,x

2
,.
..
x
N
).

IN
IT

IA
LI

ZE
W

rit
e
s l

·g
T l

in
th

e
re

gi
st

er
s

of
vl M

,
1
≤

l
≤

K
.

W
rit

e
0
T

in
th

e
re

gi
st

er
s

of
ot

he
r

no
de

s.
C

op
y

ea
ch

ve
ct

or
to

2E
bi

ts
an

d
st

or
e

th
em

as
th

e
fir

st
la

ye
r

of
in

te
rm

ed
ia

te
re

su
lts

x̃
l M

,
1
≤

l
≤

D
M

−
1
.

FO
R

m
fr

om
M

−
1

to
1

•
Ea

ch
no

de
vl m

ca
lc

ul
at

es
th

e
X

O
R

of
th

e
ou

tp
ut

s
fr

om
its

D
ch

ild
re

n-
no

de
s

an
d

w
rit

e
th

e
re

su
lt

in
th

e
2E

-b
it

re
gi

st
er

.

x̃
l m

=
⊕

v
∈
D
(v

l m
)

x̃
v
,1

≤
l
≤

D
m

−
1
;

(1
0)

•
Ea

ch
no

de
vl m

pe
rf

or
m

s
C

ite
ra

tio
ns

of
th

e
m

es
sa

ge
-

pa
ss

in
g

de
co

di
ng

.
EN

D
C

ha
ng

e
th

e
2E

-b
it

ve
ct

or
x̃
1 1

ba
ck

to
th

e
N

-b
it

co
de

w
or

d
x
1 1
.

O
ut

pu
tx

1 1
.

2E
-b

it
re

gi
st

er
an

d
a

se
pa

ra
te

G
al

la
ge

r
B

de
co

de
r,

w
he

re
E

is
th

e
nu

m
be

r
of

ed
ge

s
in

th
e

LD
PC

bi
pa

rti
te

gr
ap

h.
Ea

ch
re

gi
st

er
st

or
es

2E
bi

ts
in

st
ea

d
of

N
bi

ts
,b

ec
au

se
th

e
nu

m
be

r
of

m
es

sa
ge

s
du

rin
g

ea
ch

G
al

la
ge

r
B

de
co

di
ng

op
er

at
io

n
is

2E
.

W
e

st
or

e
th

es
e
2E

bi
ts

as
in

te
rm

ed
ia

te
re

su
lts

in
st

ea
d

of
st

or
in

g
th

e
N

-b
it

co
de

w
or

d.
N

ot
e

th
at

by
st

or
in

g
th

es
e

2E
bi

ts
,

th
e

co
rr

es
po

nd
in

g
co

de
w

or
d

is
st

or
ed

as
w

el
l.

Th
e

no
is

y
X

O
R

ga
te

s
ar

e
us

ed
to

pe
rf

or
m

th
e

co
m

po
ne

nt
-w

is
e

X
O

R
-o

pe
ra

tio
n

of
th

e
in

te
rm

ed
ia

te
re

su
lts

w
hi

ch
ar

e
D

·2
E

bi
ts

fr
om

D
ch

ild
re

n
no

de
s.

Th
e

no
is

y
G

al
la

ge
r

B
de

co
de

r
is

us
ed

to
co

rr
ec

te
rr

or
s

in
th

e
as

so
ci

at
ed

re
gi

st
er

af
te

rt
he

X
O

R
-

op
er

at
io

n.
B

ef
or

e
se

nd
in

g
th

e
ou

tp
ut

to
th

e
pa

re
nt

-n
od

e,
ea

ch
no

de
pe

rf
or

m
s
C

ite
ra

tio
ns

of
th

e
m

es
sa

ge
-p

as
si

ng
de

co
di

ng
w

ith
th

e
em

be
dd

ed
de

co
de

r.
W

e
w

ill
sh

ow
th

at
it

su
ffi

ce
s

to
us

e
C

=3
.

In
th

e
no

is
y

de
co

de
r,

th
e

er
ro

r
pr

ob
ab

ili
ty

fo
llo

w
s

th
e

de
ns

ity
ev

ol
ut

io
n
p(

i+
1
)
<

f
(p

(i
))

w
he

re
i

is
th

e
ite

ra
tio

n
in

de
x

an
d

th
e

ex
pl

ic
it

ex
pr

es
si

on
of

fu
nc

tio
n
f
(·)

is
gi

ve
n

in
Th

eo
re

m
3.

Th
is

ev
ol

ut
io

n
is

ill
us

tra
te

d
in

Fi
g.

1(
d)

.
In

th
e

en
co

di
ng

pr
oc

es
s,

th
e

X
O

R
-o

pe
ra

tio
ns

in
tro

du
ce

er
ro

rs
,w

hi
le

th
e

G
al

la
ge

rB
de

co
di

ng
pr

oc
es

ss
up

pr
es

se
st

he
m

.

Moral: can overcome info loss on each link by collecting info over many links
38

“ENCODED”: ENcoded COmputation with Decoders EmbeddeD
(with decoding also being noisy)

COMPUTE
&

CORRECT

sk1

s1 COMPUTE
&

CORRECT

s2 s3 sk

COMPUTE
&

CORRECT

CODEWORD

∼ ∼ ∼= s1g1 + s2g2 + . . .+ skgk

A valid codeword.
Can be corrected for errors

p re
g

p lim

St
ag

e
in

de
x

C&C C&C C&C C&C C&C C&C C&C C&CC&C

C&CC&CC&C

C&C
ENCODED Tree

D
codewords

Better yet: ENCODED-Tree

Reflections of a converse [Evans, Schulman ’99] in our achievability

NOISY
COMPUTATION

COMPUTE & CORRECT

NOISY
DECODING

s1g1 + s2g2

Fi
g.

1.
(a

)
sh

ow
s

a
co

m
pu

te
-a

nd
-c

or
re

ct
st

ru
ct

ur
e.

(b
)

sh
ow

s
th

e
no

is
y

en
co

di
ng

tre
e.

D
ur

in
g

th
e

en
co

di
ng

pr
oc

es
s,

th
e

bi
te

rr
or

ra
te

is
bo

un
de

d
be

tw
ee

n
tw

o
co

ns
ta

nt
s
p

re
g

an
d
p

lim
sh

ow
n

in
(c

).
Th

e
bi

te
rr

or
ra

te
ev

ol
ut

io
n

in
on

e
em

be
dd

ed
de

co
de

r
is

sh
ow

n
in

(d
).

nu
m

be
r

of
co

m
pu

ta
tio

ns
re

qu
ire

d
pe

r
bi

t
C
b

m
us

t
be

at
le

as
t

Ω
(l

o
g
1
/
p

ta
r

lo
g
1
/
ϵ
),

w
he

re
ϵ

is
th

e
er

ro
r

pr
ob

ab
ili

ty
of

no
is

y
ga

te
s.

Pr
oo

f.
Se

e
A

pp
en

di
x

C
.

Re
m

ar
k

1.
Si

nc
e

ea
ch

co
m

pu
ta

tio
n

co
ns

um
es

a
ce

rta
in

am
ou

nt
of

po
w

er
,t

he
pr

oc
es

si
ng

po
w

er
ca

nn
ot

re
m

ai
n

bo
un

de
d

w
he

n
th

e
er

ro
r

pr
ob

ab
ili

ty
p t

ar
ap

pr
oa

ch
es

ze
ro

.T
hi

s
cl

ai
m

is
co

n-
si

st
en

tw
ith

th
e

re
ce

nt
re

su
lt

th
at

Sh
an

no
n

w
at

er
fa

ll
cu

rv
e

do
es

no
th

ol
d

w
he

n
de

co
di

ng
po

w
er

is
co

ns
id

er
ed

[1
3]

.
In

th
e

ne
xt

se
ct

io
n,

w
e

w
ill

bu
ild

a
no

is
y

en
co

de
rw

ith
no

is
y

de
co

de
rs

em
be

dd
ed

in
to

it,
w

hi
ch

ac
hi

ev
es

P
bi

t
e

sm
al

le
r

th
an

p t
ar

an
d

co
m

pl
ex

ity
C
b

of
th

e
or

de
rO

(l
og

1/
p t

ar
).

Th
e

ac
hi

ev
ed

ra
te

is
al

so
an

al
yz

ed
.

II
I.

N
O

IS
Y

E
N

C
O

D
IN

G
W

IT
H

E
M

B
E

D
D

E
D

D
E

C
O

D
E

R
S

In
pa

rt
II

I-
A

,w
e

pr
ov

id
e

th
e

co
ns

tru
ct

io
n

of
a

no
is

y
en

co
de

r
th

at
m

ee
ts

th
e

lo
w

er
bo

un
d

in
Th

eo
re

m
1.

W
ith

in
ou

rp
ro

bl
em

fo
rm

ul
at

io
n,

th
e

en
co

de
rw

ith
em

be
dd

ed
de

co
de

rs
m

ay
ad

dr
es

s
lim

ita
tio

ns
of

so
m

e
ot

he
rn

at
ur

al
st

ra
te

gi
es

,w
hi

ch
is

ex
pl

ai
ne

d
in

pa
rt

II
I-

B
.T

he
m

ai
n

th
eo

re
m

,w
hi

ch
pr

ov
id

es
th

e
en

co
de

r
co

ns
tru

ct
io

n,
is

gi
ve

n
in

Se
ct

io
n

IV
.

A.
Th

e
N

oi
sy

En
co

de
r

C
on

st
ru

ct
io

n
an

d
W

or
ki

ng
Pr

in
ci

pl
es

Th
e

no
is

y
en

co
de

r
st

ru
ct

ur
e

is
sh

ow
n

in
Fi

g.
1(

b)
.

W
e

us
e

a
D

-b
ra

nc
h

tre
e

w
ith

de
pt

h
M

to
do

th
e

en
co

di
ng

.
Th

e
m

es
sa

ge
s
=

(s
1
,.
..
s K

)
is

in
pu

t
fr

om
th

e
le

af
no

de
s.

Th
e

ou
tp

ut
x
=

sG
=

(x
1
,.
..
x
N
)

is
ca

lc
ul

at
ed

fr
om

bo
tto

m
to

to
p

an
d

fin
al

ly
ob

ta
in

ed
at

th
e

ro
ot

.I
n

th
e
M

-th
le

ve
l,

i.e
.,

th
e

bo
tto

m
le

ve
l,

th
e

fir
st
K

le
af

no
de

s
ha

ve
ro

w
s

of
th

e
ge

ne
ra

to
r

m
at

rix
g
1

to
g
K

st
or

ed
in

th
em

.A
t

th
e

st
ar

t
of

th
e

en
co

di
ng

pr
oc

es
s,

th
e
k

-th
no

de
of

th
e

fir
st

K
no

de
s

ca
lc

ul
at

es
s k

·g
T k

us
in

g
N

no
is

y
A

N
D

ga
te

s
an

d
st

or
es

it
as

an
in

te
rm

ed
ia

te
re

su
lt.

Th
e

re
m

ai
ni

ng
D

M
−
1
−

K
le

af
no

de
s

st
or

e
al

l-z
er

o
co

de
w

or
ds

as
in

te
rm

ed
ia

te
re

su
lts

.
In

th
e

up
pe

r
le

ve
ls

,
ea

ch
no

de
pe

rf
or

m
s

a
co

m
po

ne
nt

-w
is

e
X

O
R

-o
pe

ra
tio

n
of

th
e
D

in
te

rm
ed

ia
te

re
su

lts
fr

om
D

ch
ild

re
n-

no
de

s.
Th

er
ef

or
e,

if
no

ga
te

er
ro

rs
oc

cu
r,

th
e

ro
ot

ge
ts

th
e

th
e

bi
na

ry
su

m
of

al
l

s k
·g

T k
,

w
hi

ch
is

th
e

co
rr

ec
t

co
de

w
or

d
x
=

sG
.

H
ow

ev
er

,
in

or
de

r
to

de
al

w
ith

er
ro

rs
ca

us
ed

by
no

is
y

ga
te

s,
ea

ch
no

n-
le

af
tre

e
no

de
is

ch
an

ge
d

to
a

co
m

pu
te

-a
nd

-c
or

re
ct

un
it

sh
ow

n
in

Fi
g.

1(
a)

,c
on

st
itu

te
d

by
2E

D
-f

an
-in

no
is

y
X

O
R

ga
te

s,
an

A
lg

or
ith

m
1

N
oi

sy
En

co
di

ng
IN

PU
T:

M
es

sa
ge

bi
ts

s=
(s

1
,s

2
,.
..
s K

).
O

U
TP

U
T:

C
ha

nn
el

in
pu

tb
its

x
=

(x
1
,x

2
,.
..
x
N
).

IN
IT

IA
LI

ZE
W

rit
e
s l

·g
T l

in
th

e
re

gi
st

er
s

of
vl M

,
1
≤

l
≤

K
.

W
rit

e
0
T

in
th

e
re

gi
st

er
s

of
ot

he
r

no
de

s.
C

op
y

ea
ch

ve
ct

or
to

2E
bi

ts
an

d
st

or
e

th
em

as
th

e
fir

st
la

ye
r

of
in

te
rm

ed
ia

te
re

su
lts

x̃
l M

,
1
≤

l
≤

D
M

−
1
.

FO
R

m
fr

om
M

−
1

to
1

•
Ea

ch
no

de
vl m

ca
lc

ul
at

es
th

e
X

O
R

of
th

e
ou

tp
ut

s
fr

om
its

D
ch

ild
re

n-
no

de
s

an
d

w
rit

e
th

e
re

su
lt

in
th

e
2E

-b
it

re
gi

st
er

.

x̃
l m

=
⊕

v
∈
D
(v

l m
)

x̃
v
,1

≤
l
≤

D
m

−
1
;

(1
0)

•
Ea

ch
no

de
vl m

pe
rf

or
m

s
C

ite
ra

tio
ns

of
th

e
m

es
sa

ge
-

pa
ss

in
g

de
co

di
ng

.
EN

D
C

ha
ng

e
th

e
2E

-b
it

ve
ct

or
x̃
1 1

ba
ck

to
th

e
N

-b
it

co
de

w
or

d
x
1 1
.

O
ut

pu
tx

1 1
.

2E
-b

it
re

gi
st

er
an

d
a

se
pa

ra
te

G
al

la
ge

r
B

de
co

de
r,

w
he

re
E

is
th

e
nu

m
be

r
of

ed
ge

s
in

th
e

LD
PC

bi
pa

rti
te

gr
ap

h.
Ea

ch
re

gi
st

er
st

or
es

2E
bi

ts
in

st
ea

d
of

N
bi

ts
,b

ec
au

se
th

e
nu

m
be

r
of

m
es

sa
ge

s
du

rin
g

ea
ch

G
al

la
ge

r
B

de
co

di
ng

op
er

at
io

n
is

2E
.

W
e

st
or

e
th

es
e
2E

bi
ts

as
in

te
rm

ed
ia

te
re

su
lts

in
st

ea
d

of
st

or
in

g
th

e
N

-b
it

co
de

w
or

d.
N

ot
e

th
at

by
st

or
in

g
th

es
e

2E
bi

ts
,

th
e

co
rr

es
po

nd
in

g
co

de
w

or
d

is
st

or
ed

as
w

el
l.

Th
e

no
is

y
X

O
R

ga
te

s
ar

e
us

ed
to

pe
rf

or
m

th
e

co
m

po
ne

nt
-w

is
e

X
O

R
-o

pe
ra

tio
n

of
th

e
in

te
rm

ed
ia

te
re

su
lts

w
hi

ch
ar

e
D

·2
E

bi
ts

fr
om

D
ch

ild
re

n
no

de
s.

Th
e

no
is

y
G

al
la

ge
r

B
de

co
de

r
is

us
ed

to
co

rr
ec

te
rr

or
s

in
th

e
as

so
ci

at
ed

re
gi

st
er

af
te

rt
he

X
O

R
-

op
er

at
io

n.
B

ef
or

e
se

nd
in

g
th

e
ou

tp
ut

to
th

e
pa

re
nt

-n
od

e,
ea

ch
no

de
pe

rf
or

m
s
C

ite
ra

tio
ns

of
th

e
m

es
sa

ge
-p

as
si

ng
de

co
di

ng
w

ith
th

e
em

be
dd

ed
de

co
de

r.
W

e
w

ill
sh

ow
th

at
it

su
ffi

ce
s

to
us

e
C

=3
.

In
th

e
no

is
y

de
co

de
r,

th
e

er
ro

r
pr

ob
ab

ili
ty

fo
llo

w
s

th
e

de
ns

ity
ev

ol
ut

io
n
p(

i+
1
)
<

f
(p

(i
))

w
he

re
i

is
th

e
ite

ra
tio

n
in

de
x

an
d

th
e

ex
pl

ic
it

ex
pr

es
si

on
of

fu
nc

tio
n
f
(·)

is
gi

ve
n

in
Th

eo
re

m
3.

Th
is

ev
ol

ut
io

n
is

ill
us

tra
te

d
in

Fi
g.

1(
d)

.
In

th
e

en
co

di
ng

pr
oc

es
s,

th
e

X
O

R
-o

pe
ra

tio
ns

in
tro

du
ce

er
ro

rs
,w

hi
le

th
e

G
al

la
ge

rB
de

co
di

ng
pr

oc
es

ss
up

pr
es

se
st

he
m

.

Moral: can overcome info loss on each link by collecting info over many links
38

ENCODED vs Uncoded and Repetition

ENCODED provably requires fewer gates, and less energy than repetition in
scaling sense [Yang, Grover, Kar IEEE Trans. Info Theory ’17]

0 2 4 6 8 10 12 14 16
0

1

2

3

4

5
x 10

-3

Stage Index in the Tree Structure

Bi
t E

rro
r R

at
io

Average Bit Error Ratio (Simulation)
Theoretical Lower Bound
Theoretical Upper Bound

0 2 4 6 8 10 12 14 16
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Stage Index in the Tree Structure

Bi
t E

rro
r R

at
io

“ENCODED” (using LDPC codes)

“Uncoded”

Pe Pe

Moral: repeated error-correction can fight information dissipation

Theorem Error correction with ENCODED-Tree [Yang, Grover, Kar Allerton ’14]
LDPC codes of sufficiently large girth can keep errors contained through repeated
error suppression

Using general device
models, focusing

specifically on spintronics

39
Next: How do these insights apply to processors of limited memory (but > 1 gate)?

M x V on small (but reliable) processors

Let’s first understand M x V on reliable processors
“SUMMA”: Scalable Universal Matrix Multiplication Algorithm
 - a widely used algorithm [van de Geijn and Watts ’95]

40

A11

x1

br
oa

dc
as

t

m
at

rix
 A

tree
aggregation

A1

x

br
oa

dc
as

t

m
at

rix
 A

the entire input vector

SUMMAGeneral M-V Multiplication
x2 xc

AP-1

AP

A1c

Ar1 Arc

x=[x1, x2, ..., xc]Naive M x V computation (Ax)

Ax

M x V on small (but reliable) processors

Let’s first understand M x V on reliable processors
“SUMMA”: Scalable Universal Matrix Multiplication Algorithm
 - a widely used algorithm [van de Geijn and Watts ’95]

40

A11

x1

br
oa

dc
as

t

m
at

rix
 A

tree
aggregation

A1

x

br
oa

dc
as

t

m
at

rix
 A

the entire input vector

SUMMAGeneral M-V Multiplication
x2 xc

AP-1

AP

A1c

Ar1 Arc

x=[x1, x2, ..., xc]Naive M x V computation (Ax)

Ax

M x V on small (but reliable) processors

Let’s first understand M x V on reliable processors
“SUMMA”: Scalable Universal Matrix Multiplication Algorithm
 - a widely used algorithm [van de Geijn and Watts ’95]

40

A11

x1

br
oa

dc
as

t

m
at

rix
 A

tree
aggregation

A1

x

br
oa

dc
as

t

m
at

rix
 A

the entire input vector

SUMMAGeneral M-V Multiplication
x2 xc

AP-1

AP

A1c

Ar1 Arc

x=[x1, x2, ..., xc]Naive M x V computation (Ax)

Ax

M x V on small (but reliable) processors

Let’s first understand M x V on reliable processors
“SUMMA”: Scalable Universal Matrix Multiplication Algorithm
 - a widely used algorithm [van de Geijn and Watts ’95]

40

Coded SUMMA for M x V on error-prone processors

A11

x1

br
oa

dc
as

t

co
de

d
m

at
rix

m
at

rix
 A

tree
aggregation

A1

x
br

oa
dc

as
t

co
de

d
m

at
rix

m
at

rix
 A

the entire input vector

ENCODED (using LDPC)General Coded Computing
x2 xc

AP-1

AP

BP+1

BP/R

A1c

Ar1 Arc

BscBs1

[in prep.] 41

with repeated
error correction

ABFT/MDS coding

Coded SUMMA for M x V on error-prone processors

A11

x1

br
oa

dc
as

t

co
de

d
m

at
rix

m
at

rix
 A

tree
aggregation

A1

x
br

oa
dc

as
t

co
de

d
m

at
rix

m
at

rix
 A

the entire input vector

ENCODED (using LDPC)General Coded Computing
x2 xc

AP-1

AP

BP+1

BP/R

A1c

Ar1 Arc

BscBs1

[in prep.] 41

with repeated
error correction

ABFT/MDS coding

Summary of Part II.2

2) Decoding also error prone

1) Errors accumulate; information dissipates

What is fundamentally new in small vs large processors?

Embed (noisy) decoders to repeatedly suppress errors, limiting info dissipation

0) Memory limitations: necessitate algorithms like SUMMA

42

Coded Map-reduce
Not covered in detail here, but belongs thematically

Map-reduce: A widely used framework for parallelizing a variety of
tasks
•  Simple to learn, very scalable

[Li-Avestimehr-Maddah-Ali 2015]

Map-reduce: A widely used framework for parallelizing a variety of
tasks
•  Simple to learn, very scalable

Three phases	

Map() Reduce()
	

First phase

Data exchange

Second phase
(usually called shuffle)

Third phase

Coded Map-reduce
Not covered in detail here, but belongs thematically

[Li-Avestimehr-Maddah-Ali 2015]

Map-reduce: A widely used framework for parallelizing a variety of
tasks
•  Simple to learn, very scalable

Three phases

Map() Reduce()

First phase

Data exchange

Second phase
(usually called shuffle)

Third phase

Idea of coded map reduce
•  Introduce redundancy in the map phase
•  Exploit information theory ideas (a la coded caching) to minimize

communication cost in data exchange
•  Save on overall time-to-completion by tuning correctly

Coded Map-reduce
Not covered in detail here, but belongs thematically

[Li-Avestimehr-Maddah-Ali 2015]

Lots of follow up work, exciting area of research!

Conventional “division of labor” approach:
 - design a “good” algorithm with low Turing complexity
 - engineer deals with real world costs and imperfections

This tutorial: an information-theoretic approach:
 - model system costs and imperfections and,
 - derive fundamental information-theoretic limits,  
 - obtain optimal strategies for these models

Broader view of coded distributed computing

46

Our thanks to…

Funding sources:

center of the Semiconductor Research Corporation

Help with talk and slides:Collaborators:

- Mohammad Ali Maddah Ali
- Salman Avestimehr
- Alex Dimakis
- Gauri Joshi
- Kangwook Lee
- Ramtin Pedarsani

- Soummya Kar
- Kishori Konwar  
- Nancy Lynch
- Muriel Medard
- Prakash N Moorthy
- Peter Musial 
- Zhiying Wang

Student collaborators: 
- Rami Ali 
- Jeremy Bai 
- Malhar Chaudhari
- Sanghamitra Dutta
- Mohammad Fahim
- Farzin Haddadpour
- Haewon Jeong
- Yaoqing Yang

National Science Foundation (NSF)

47

Appendices/Backup slides

48

Weak scaling:
Number of processors scales with problem size
 - constant computational workload per processor
Strong scaling:
Problem size fixed!
 - finding the “sweet-spot” in number of processors
 - too many processors => high comm overhead
 - too few => not enough parallelization
Related: gate-level errors
 - error/fault-tolerant computing

49

Related problem:
Minimizing total power in communication systems

P
total

= P
T

+ P
enc

+ P
dec

New goal: Design a -efficient codeP
total

PT
ChannelTransmitter ReceiverM cM

(errors only in the channel;
encoding/decoding noiseless)

50

Related problem:
Minimizing total power in communication systems

0 0

1 1
pch

1� pch

1� pch

pch
pch = Q

 s
�PT
N0
2

!
Circuit implementation model: Channel model:

P
total

= P
T

+ P
enc

+ P
dec

New goal: Design a -efficient codeP
total

PT
ChannelTransmitter ReceiverM cM

(errors only in the channel;
encoding/decoding noiseless)

50

Related problem:
Minimizing total power in communication systems

0 0

1 1
pch

1� pch

1� pch

pch
pch = Q

 s
�PT
N0
2

!
Circuit implementation model: Channel model:

E
friction

= µ w d

B bitsw

d d

wweight

E
info�friction

= µ B d

Circuit energy model: “Information-Friction” [Grover, IEEE Trans IT 2015]
 [Blake, Ph.D. thesis UToronto, 2017]

P
total

= P
T

+ P
enc

+ P
dec

New goal: Design a -efficient codeP
total

PT
ChannelTransmitter ReceiverM cM

(errors only in the channel;
encoding/decoding noiseless)

50

 [Grover, IEEE Trans. Info Theory ’15]Theorem

for any code, and any encoding &
decoding algorithm implemented
in the circuit model

Eenc,dec per-bit � ⌦

0

@

s
log

1
Pe

PT

1

A

builds on
[El Gamal, Greene, Peng ’84]
[Grover, Woyach, Sahai ’11]
[Grover, Goldsmith, Sahai ’12]
[Grover et al. ’07-15]
[Thompson ’80]

Fundamental limits on total communication energy

51

0 0.05 0.1 0.15 0.2

−30

−25

−20

−15

−10

−5

Total power (Watts)

lo
g 10

(P
e)

Total power (watts)

l
o
g

1
0
(
P
e
)

Shannon limit
(Tx power)

Transmit power

fixed

0.05

R,W, �

 [Grover, IEEE Trans. Info Theory ’15]Theorem

for any code, and any encoding &
decoding algorithm implemented
in the circuit model

Eenc,dec per-bit � ⌦

0

@

s
log

1
Pe

PT

1

A

builds on
[El Gamal, Greene, Peng ’84]
[Grover, Woyach, Sahai ’11]
[Grover, Goldsmith, Sahai ’12]
[Grover et al. ’07-15]
[Thompson ’80]

Fundamental limits on total communication energy

51

0 0.05 0.1 0.15 0.2

−30

−25

−20

−15

−10

−5

Total power (Watts)

lo
g 10

(P
e)

Total power (watts)

l
o
g

1
0
(
P
e
)

Shannon limit
(Tx power)

Transmit power

fixed

0.05

R,W, �

0 1 2 3 4 5
x 10−5

−30

−25

−20

−15

−10

−5

Power (Watts)

l
o
g

1
0
(
P
e
)

P
total

P ⇤
T

P
total

with bounded PT

⇠ 3

r
log

1

Pe

⇠
r
log

1

Pe
⇠ 3

r
log

1

Pe

 [Grover, IEEE Trans. Info Theory ’15]Theorem

for any code, and any encoding &
decoding algorithm implemented
in the circuit model

Eenc,dec per-bit � ⌦

0

@

s
log

1
Pe

PT

1

A

builds on
[El Gamal, Greene, Peng ’84]
[Grover, Woyach, Sahai ’11]
[Grover, Goldsmith, Sahai ’12]
[Grover et al. ’07-15]
[Thompson ’80]

Fundamental limits on total communication energy

51

0 0.05 0.1 0.15 0.2

−30

−25

−20

−15

−10

−5

Total power (Watts)

lo
g 10

(P
e)

Total power (watts)

l
o
g

1
0
(
P
e
)

Shannon limit
(Tx power)

Transmit power

fixed

0.05

R,W, �

0 1 2 3 4 5
x 10−5

−30

−25

−20

−15

−10

−5

Power (Watts)

l
o
g

1
0
(
P
e
)

P
total

P ⇤
T

P
total

with bounded PT

⇠ 3

r
log

1

Pe

⇠
r
log

1

Pe
⇠ 3

r
log

1

Pe

 [Grover, IEEE Trans. Info Theory ’15]Theorem

for any code, and any encoding &
decoding algorithm implemented
in the circuit model

Eenc,dec per-bit � ⌦

0

@

s
log

1
Pe

PT

1

A

builds on
[El Gamal, Greene, Peng ’84]
[Grover, Woyach, Sahai ’11]
[Grover, Goldsmith, Sahai ’12]
[Grover et al. ’07-15]
[Thompson ’80]

Fundamental limits on total communication energy

Straightforward extension to noisy computing of invertible linear transforms
[Grover, ISIT’14]: don’t aim for “Shannon capacity of noisy computing”!

51

any square
submatrix invertible

(e.g. gen matrix of MDS code;
transposed)

Short Dot Achievability

B

s

P ⇥N

x

N ⇥ 1

. . .

. . . P x N P x K
K x N

AM⇥N

Z(K�M)⇥N

K = P � r + 1

=

B = R

A
Z

�

Rows of A lie in the span of any K rows of B

i-th column of Z chosen to set zeroes in the i-th column of B

Equation/variable counting gives s N

P
(P �K +M)

52

Short Dot outer bound intuition

Intuition: no column can be too sparse:
can’t have > K zeros
 - since A has to be recoverable from any K rows 

Converse: Any Short-Dot code satisfies:

s � N

P
(P �K + 1)

Tighten by rank arguments (messy; happy to discuss offline)

B

s

P ⇥N

x

N ⇥ 1

. . .

. . .

This argument yields a looser converse:

53

