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Abstract—We investigate the problem of minimizing the overall
transmission delay of packets in a multi-access wireless com-
munication system, where the transmitters have average power
constraints. We use a multi-dimensional Markov chain to model
the medium access control (MAC) layer behavior. The state of
the Markov chain represents current queue lengths. Our goal
is to minimize the average packet delay through controlling
the probability of departure at each state, while satisfying the
average power constraint for each queue. First, we formulate
the problem as a constrained optimization problem. Next, we
transform the problem into a standard linear programming
problem. Then, we analyze the linear programming problem,
and develop a procedure by which we determine the optimal
solution analytically.

I. INTRODUCTION

In many applications, the average delay packets experience
is an important quality of service criterion. Our goal in this
paper is to combine information theory and queueing theory to
devise a transmission protocol which minimizes the average
delay experienced by packets, subject to an average power
constraint at each transmitter.

Similar goals have been undertaken by various authors in
recent years. Reference [1] considers a time-slotted system
with N queues and one server. In each slot, the controller
allocates the server to one of the connected queues, such
that the average delay in the system is minimized. The
authors develop an algorithm named “longest connected queue
(LCQ),” where the server is allocated to the longest of all
connected queues at any given slot. The authors prove that in
a symmetric system, LCQ algorithm minimizes the average
delay. Reference [1] does not consider the issue of power
consumption during transmissions.

Reference [2] combines information theory and queueing
theory in multi-access communication over an additive Gaus-
sian noise channel. Once a packet arrives, it is transmitted
immediately with a fixed power. Each transmitter-receiver pair
treats the other active pairs as noise. Therefore, the service rate
for each packet is a function of the number of active users in
the system. Reference [2] derives a relationship between the
average delay and a fixed probability of error requirement.

References [3], [4], [5] and [6] consider the data trans-
mission problem from both information theory and queueing
theory perspectives. Reference [3] aims to minimize the av-
erage delay through rate allocation in a multi-access scenario
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in additive Gaussian noise, and develops the “Longer-Queue-
Higher-Rate (LQHR)” allocation strategy in the symmetric
multi-access case, which is shown to minimize the average
delay of packets. This rate allocation corresponds to select-
ing an extreme point (i.e., a corner point) in the multi-
access capacity region. Reference [4] considers the problem
of rate/power control in a single-user communication over
a fading channel. The objective is to minimize the average
power with delay constraints. It formulates the problem into
a dynamic programming problem and develops a delay-power
tradeoff curve. Reference [5] uses dynamic programming to
numerically calculate the optimal power/rate control policies
that minimize the average delay in a single-user system under
an average power constraint. Reference [6] formulates the
power constrained average delay minimization problem into
a Markov decision problem and analyzes the structure of the
optimal solution for a single-user fading channel. As in [4], in
these papers as well, because of the large number of possible
rate/power choices at each stage, it is almost impossible to get
analytical optimal solutions.

Reference [7] considers a cognitive multiple access system.
In the model of [7], the primary user (PU) always transmits
a packet during a slot whenever its queue is not empty. The
secondary user (SU) always transmits when the PU is idle, and
it transmits with some probability (which is a function of its
own queue length) when the PU is active. The receiver oper-
ates at the corner point of the multiple access channel capacity
region where the SU is decoded first and the PU is decoded
next, so that even though the SU experiences interference from
the PU, the PU is always decoded interference-free. Reference
[7] aims to minimize the average delay through controlling the
transmission probability of the SU. It formulates the problem
as a one-dimensional Markov chain and derives an analytical
result to minimize the average delay of the SU under an
average power constraint.

In this paper, we generalize [7] to a two-user multi-access
system, where both users have equal priority. Our goal is to
minimize the average delay of the packets in the system under
an average power constraint for each user. As in [4]–[7], we
consider a discrete-time model. We divide the transmission
time into time slots. Packets arriving at the transmitters are
stored in the queues at each transmitter. In each slot, each user
decides on a transmission rate based on the current lengths
of both queues. Unlike [4]–[6], where the rate per slot is a
continuous variable, we restrict the transmission rate for each
user in a slot to be either zero or one packet per slot. We



define the probabilities of choosing each transmission rate pair,
which can be (0, 0), (0, 1), (1, 0) or (1, 1), for each given pair
of queue lengths.

Our objective is to find a set of transmission probabilities
that minimizes the average delay while satisfying the average
power constraints for both users. As in [7], there are two main
reasons that we introduce transmission probabilities: First, a
randomized policy is more general than a deterministic policy;
probability selections of 0 and 1 correspond to a deterministic
policy, which is a special case of the randomized policy.
Secondly, since we cannot choose arbitrary departure rates in
each slot, the use of transmission probabilities enables us to
control the average rate per slot at a finer scale. Compared
to [4]–[6], our model has a more restricted policy space at
each stage, however, this model enables us to construct a two-
dimensional discrete-time Markov chain and eventually gives
us a closed-form optimal solution.

In the rest of this paper, we first express the average delay
and the average power consumed for each user as functions of
the transmission probabilities and steady state distribution of
the queue lengths. We then transform our problem to a linear
programming problem, and derive the optimal transmission
scheme analytically.

II. SYSTEM MODEL

We consider a discrete-time additive Gaussian noise
multiple-access system with two transmitters and one receiver.
The received signal is

Y = X1 + X2 + Z (1)

where Xi is the signal of user i, and Z is a Gaussian noise
with zero mean and variance σ2.

In this two-user system, the region of feasible received
powers is [8]

P1 ≥ σ2(22R1 − 1)

P2 ≥ σ2(22R2 − 1)

P1 + P2 ≥ σ2(22(R1+R2) − 1) (2)

For simplicity, we consider a symmetric two-user system,
where both users have the same average power constraint Pavg .

In the MAC layer, we assume that packets arrive at the
transmitters at a uniform size of B bits per packet. We partition
the time into small slots such that we have at most one packet
arrive and/or depart during each slot. Let a1[n] and a2[n]
denote the number of packets arriving at the first and second
transmitters, respectively, during time slot n; see Figure 1. We
assume that the packet arrivals are i.i.d. from slot to slot. We
also assume symmetric arrival rates to both queues:

Pr{ai[n] = 1} = θ, Pr{ai[n] = 0} = 1− θ, i = 1, 2 (3)

where θ is the common arrival rate.
There is a buffer with capacity N at each transmitter to

store the packets. Let d1[n] and d2[n] denote the number of
packets transmitted in time slot n. The queue length in each
buffer evolves according to

qi[n + 1] = (qi[n]− di[n])+ + ai[n] i = 1, 2 (4)

where (x)+ denotes max(0, x).
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Fig. 1. The system model.

The departure rate for each queue in each slot is either
zero or one packet per slot, and it depends on the current
queue lengths. When both queues are empty, the departure
rates for both queues should be zero packet per slot. In all other
situations, the departure rates for both queues should not be
zero packet per slot simultaneously. This is because, keeping
both transmitters idle does not save any power, but causes
unnecessary delay. Therefore, in these situations, there are
three possible departure rate pairs: (d1, d2) = (1, 0), (0, 1) or
(1, 1). We enumerate them as d1, d2, d3. When the first queue
length is i and the second queue length is j, we define the
probabilities of choosing each pair of these departure rates as
g1

ij , g2
ij , g3

ij , respectively. Note that g1
ij +g2

ij +g3
ij = 1. We also

note that gk
ij , k = 1, 2, 3, i = 0, 1, . . . , N and j = 0, 1, . . . , N

are the main parameters we aim to choose optimally.
The state space of the Markov chain consists of all possible

pairs of queue lengths. We denote the state as q , (q1, q2).
When both of the queues are empty, i.e., q[n] = (0, 0), trans-
mitters have no packet to send, and from (4), q[n+1] = a[n].
The corresponding transition probabilities in this case are:

Pr{q[n + 1] = (0, 0)|q[n] = (0, 0)} = (1− θ)2

Pr{q[n + 1] = (1, 0)|q[n] = (0, 0)} = θ(1− θ)
Pr{q[n + 1] = (0, 1)|q[n] = (0, 0)} = θ(1− θ)

Pr{q[n + 1] = (1, 1)|q[n] = (0, 0)} = θ2 (5)

When one of the queues is empty, there is only one possible
departure rate pair, which is either (0, 1) or (1, 0), depending
on which queue is empty. Therefore, from our argument above,
the departure probabilities should not be free parameters, but
must be chosen as g1

i0 = g2
0j = 1. The corresponding transition

probabilities are:

Pr{q[n + 1] = (i− 1, 0)|q[n] = (i, 0)} = (1− θ)2

Pr{q[n + 1] = (i− 1, 1)|q[n] = (i, 0)} = θ(1− θ)
Pr{q[n + 1] = (i, 0)|q[n] = (i, 0)} = θ(1− θ)

Pr{q[n + 1] = (i, 1)|q[n] = (i, 0)} = θ2 (6)

A similar argument is valid when the first queue is empty,
i.e., q[n] = (0, j). Transition probabilities in this case can be
written similar to (6).

When neither of the queues is empty, i.e., for q[n] = (i, j),
where 1 ≤ i, j ≤ N , the transition probabilities are:

Pr{(i− 1, j − 1)|(i, j)} = g3
ij(1− θ)2

Pr{(i− 1, j + 1)|(i, j)} = g1
ijθ(1− θ)

Pr{(i + 1, j − 1)|(i, j)} = g2
ijθ(1− θ)

Pr{(i, j + 1)|(i, j)} = g1
ijθ

2

Pr{(i + 1, j)|(i, j)} = g2
ijθ

2

Pr{(i− 1, j)|(i, j)} = g3
ijθ(1− θ) + g1

ij(1− θ)2



Pr{(i, j − 1)|(i, j)} = g3
ijθ(1− θ) + g2

ij(1− θ)2

Pr{(i, j)|(i, j)} = (g1
ij + g2

ij)θ(1− θ)+g3
ijθ

2 (7)

In this paper, we assume that the average power constraints
are large enough to prevent any packet losses and maintain
a stable system. In order to prevent overflows, we always
choose to transmit one packet from a queue whenever its
length reaches N . Therefore, we have g1

iN = g2
Nj = g3

NN = 1.
Let us define the steady state distribution of this Markov

chain as π = [π00, π01, · · · , π0N , π10, · · · , πNN ]. Then, the
steady state distribution must satisfy

πP = π, π1 = 1 (8)

where P is the transition matrix defined by the transition
probabilities (5)-(7). We can express the average number of
packets in the system as

∑
i,j πij(i+ j). According to Little’s

law [9], for our problem, the average delay D is equal to

D =
1
2θ

∑

i,j

πij(i + j) (9)

where 2θ is the average arrival rate for the two-user multiple-
access system.

III. PROBLEM FORMULATION

The transmission rate for both transmitters during a slot is
either one packet per slot or zero packet per slot. Equivalently,
the transmission rate is either B/τ bits/channel use or 0
bits/channel use, where τ is the number of channel uses in
each slot. Next, let us consider the power consumptions during
each slot. When only one user transmits, since there is no
interference from the other transmitter, the transmitted power
for the active user needs to satisfy

P ≥ σ2(22R − 1) , α (10)

where R = B/τ . In order to minimize the power, we choose
the transmit power for the active user as α. When both
users transmit simultaneously, from (2), their powers should
additionally satisfy

P1 + P2 ≥ σ2(24R − 1) , β (11)

The feasible power region is shown in Figure 2.
Any operating point on the dominant face of the power

region gives the same sum transmit power. We assume that
the operating point is P1 = β1, P2 = β2, where (β1, β2) is a
point on the dominant face, i.e., β1 + β2 = β. Thus, for any
state (i, j) 6= (0, 0), the average power consumed for the first
queue is g1

ijα + g3
ijβ1, while the average power consumed

for the second queue is g2
ijα + g3

ijβ2. Our goal is to find
the transmission policy, i.e., the probabilities gk

ijs, along with
the operating point (β1, β2), such that the average delay is
minimized, subject to an average power constraint for each
user. Therefore, our problem can be expressed as:

min
g,β1,β2

1
2θ

∑

i,j

πij(i + j) (12)

s.t.
∑

i,j

πij(g1
ijα + g3

ijβ1) ≤ Pavg (13)

∑

i,j

πij(g2
ijα + g3

ijβ2) ≤ Pavg (14)

πP = π, π1 = 1 (15)

β2

β

β1

α β P2

P1

α

Fig. 2. Feasible power region.

We note that the state transition matrix P is filled with
variables in (5)-(7) which depend on gk

ijs. Also, through (15),
πijs depend on gk

ijs, as well.

IV. ANALYSIS OF THE PROBLEM

Note that g1
ij +g2

ij +g3
ij = 1 for any (i, j) 6= (0, 0), therefore

πij = πij(g1
ij + g2

ij + g3
ij). Define x00 = π00, xk

ij = πijg
k
ij ,

k = 1, 2, 3, i = 0, 1, . . . , N , j = 0, 1, . . . , N . Our aim is to
find optimal gk

ijs. However, as we will see, our analysis will
be more tractable with variables xk

ij . Let us construct a vector
of all of our unknowns x = [x00, x

1
01, x

2
01, x

3
01, . . . , x

3
NN ]T .

We also note that under a policy preventing any overflows,
which requires a large enough Pavg , all packets arriving at a
buffer are eventually transmitted out. Therefore, we have the
average arrival rate equal to the average departure rate, i.e.,∑

i,j

(x1
ij + x3

ij) = θ,
∑

i,j

(x2
ij + x3

ij) = θ (16)

When the average power constraints of the users are very
large, the transmitters can always transmit a packet from the
nonempty queues. In this case, the Markov chain will have
only four non-transient states: (0, 0), (0, 1), (1, 0), (1, 1), with
the stationary distribution π00 = (1 − θ)2, π01 = π10 =
θ(1 − θ), π11 = θ2. The average power consumption for
each queue is P1csmp = θ(1 − θ)α + θ2β1, P2csmp =
θ(1 − θ)α + θ2β2. Consequently, the total average power
consumption is Pcsmp = 2θ(1− θ)α + θ2β. Therefore, if the
average power constraint Pavg is greater than Pcsmp/2, then
we can always find a pair (β1, β2) such that Pavg ≥ P1csmp,
Pavg ≥ P2csmp. This implies that the given average power
constraints will be loose. The corresponding average delay
will be one slot, which is the minimal delay we can achieve.

Therefore, from now on, we will focus on the case where the
given Pavg is less than Pcsmp/2 computed above. In this case,
both power constraints in (13) and (14) should be tight, and all
four of the constraints (13)-(15) in our optimization problem
will be equality constraints. By solving these equations, we
have β1 = β2 = β/2, and we also obtain the values of x00

and
∑

i,j xk
ij , k = 1, 2, 3. Thus, we transform our optimization

problem in (12)-(15), which was in terms of gk
ijs, into

min
x

∑

i,j

(
3∑

k=1

xk
ij(i + j)

)
(17)

s.t. x00 = 1− 2θ(β − α)− 2Pavg

β − 2α
(18)

∑

i,j

x1
ij =

∑

i,j

x2
ij =

θβ − 2Pavg

β − 2α
(19)



∑

i,j

x3
ij =

2Pavg − 2θα

β − 2α
(20)

Qx = 0 (21)

which is in terms of xk
ijs. Here, Q is a (N + 1)2 × (4(N +

1)2 − 3) matrix defined by matrix P. We get the equations in
(21) from (15) by substituting πijg

k
ij for xk

ij . The optimization
problem in (17)-(21) is a linear programming problem. In
addition, we observe that, in the objective function, all of the
xk

ijs with the same sum of indices share the same weight i+j.
This motivates us to group the xk

ijs along the diagonals of the
two-dimensional Markov chain and define their sum, for the
nth diagonal, as

yn =
n∑

i=0

(x1
i,n−i + x2

i,n−i), tn =
n∑

i=0

x3
i,n−i (22)

We also get 2N flow-in-flow-out equations between the diag-
onal groups. For n = 0, 1, we have

x00

(
θ2 + 2θ(1− θ)

)
= (y1 + t2)(1− θ)2

(x00 + y1)θ2 = (y2 + t3)(1− θ)2 + t2
(
1− θ2

)

and for n = 2, 3, . . . , 2N − 2, we have

ynθ2 = (yn+1 + tn+2)(1− θ)2 + tn+1

(
1− θ2

)

y2N−1θ
2 = t2N

(
1− θ2

)
(23)

Figure 3 illustrates the transitions between diagonal groups for
a system with N = 3.

We multiply both sides of the n-th equation in (23) with zn

and sum over n. Then, we take the second derivative of the
sum with respect to z and let z = 1,

2N∑
n=1

tnn =
1

2(1− θ)

(
x00θ

2 + (1− θ)2
(

2N∑
n=1

yn

)

+
(
1− θ2 + 2(1− θ)2

)
(

2N∑
n=1

tn

)

− (
(1−θ)2−θ2

)
(

2N∑
n=1

ynn

))
(24)

From the definition of yn and tn in (22), and using (19)-(20),
we note

2N∑
n=1

yn =
∑

i,j

(x1
ij + x2

ij) =
2(θβ − 2Pavg)

β − 2α
, Ψ (25)

2N∑
n=1

tn =
∑

i,j

x3
ij =

2Pavg − 2θα

β − 2α
, Φ (26)

This, together with (24), implies that our objective function in
(17) can be written as

2N∑
n=1

(yn + tn)n =
1

2(1− θ)

2N∑
n=1

ynn + C (27)

where C is a constant, and 1
2(1−θ) is positive. Therefore,

minimizing the original objective function in (17) is equivalent
to minimizing

∑2N
n=1 ynn.

V. THE TWO-STEP OPTIMIZATION SCHEME

We propose to solve our original optimization problem in
two steps. In the first step, we will consider the optimization

0 , 30 , 0

2 , 0

3 , 0

1 , 0 1 , 2 1 , 31 , 1

2 , 2 2 , 32 , 1

3 , 1 3 , 2 3 , 3

0 , 1 0 , 2

Fig. 3. The transitions between diagonal groups when N = 3.

problem in terms of yns and tns, where the objective function
is

∑2N
n=1 ynn, and the constraints are (25), (18), and (23). The

objective function of this optimization problem is exactly the
same as that of our original optimization problem in (17)-(21),
however, our constraints are more lenient than those of (17)-
(21). These imply that, the result we obtain in the first step,
in principle, may not be feasible for the original problem.

Therefore, in the second step we will allocate yns and tns
we obtain from the first step to xk

ijs in such a way that
the remaining independent transition equations in (21) are
satisfied. We note that (16) can be derived from (21), therefore,
once (21) is satisfied, (16) will be satisfied. Together with (25),
we can make sure that (19) and (20) are satisfied. Therefore,
if we can find a valid allocation in the second step, we will
conclude that the solution found in the first step is a feasible
solution to our original problem. In addition, once we prove
the optimality of the solution in the first step, it will be globally
optimal for the original problem.

First, we will minimize
∑2N

n=1 ynn subject to (25), (18),
and (23). This means that we will allocate Ψ to yns in a way
to minimize

∑2N
n=1 ynn. This will require us to allocate larger

values to yns with smaller n, while making sure that (25),
(18), and (23) are satisfied. Let us define η = θ2+2θ(1−θ)

(1−θ)2 ,

δ = θ2

(1−θ)2 , ρ = 1−θ2

(1−θ)2 . Examining (23), we note that for
fixed x00, maximizing y1, y2, . . . requires us to set t2, t3, . . .
to zero. Therefore, we choose

y1 = x00η (28)
y2 = (x00 + y1)δ (29)
yn = yn−1δ, tn = 0, n = 1, 2, . . . , n∗ (30)

where n∗ is the largest integer satisfying
∑n∗

n=1 yn < Ψ. Let
∆ = Ψ−∑n∗−1

n=1 yn. We need to check that all of the group
transition equations are satisfied. In the following we assume
that n∗ ≥ 3. If n∗ = 1, 2, the allocation will be in a slightly
different form, which we omit here due to space limitations.

If ∆ = yn∗δρ/(δ + ρ), then let

yn∗+1 = ∆, tn∗+2 = yn∗+1δ/ρ (31)

We can verify that after this allocation, group transition
equations (23) are satisfied. We also note that Ψ is allocated
to {yn}n∗+1

n=1 , among which, {yn}n∗
n=1 attain their maximum

possible values. Therefore, the objective function achieves its
minimal possible value for the first step.

If ∆ > yn∗δρ/(δ + ρ), we assign ∆ to yn∗+1 and yn∗+2



proportionally. Specifically, we let

yn∗+1 =
∆(ρ + δ) + yn∗δρ

2

ρ2 + δρ + δ + ρ

yn∗+2 =
∆(ρ + δ)ρ− yn∗δρ

2

ρ2 + δρ + δ + ρ

tn∗+2 =
yn∗δ(δρ + δ + ρ)−∆(ρ + δ)

ρ2 + δρ + δ + ρ

tn∗+3 =
∆(ρ + δ)δ − yn∗δ

2ρ

ρ2 + δρ + δ + ρ
(32)

Since yn∗δ > ∆ > yn∗δρ/(δ + ρ), we can verify that
each value above is positive, and the sum constraint and the
group transition equations are satisfied. Among the non-zero
{yn}n∗+2

n=1 , although {yn}n∗
n=1 attain their maximum, yn∗+1

does not. Therefore, different from the first scenario, in this
case, we cannot immediately claim that the result is optimal.
We will give the mathematical proof for the optimality of this
assignment in a longer, journal version of this paper.

If ∆ < yn∗δρ/(δ+ρ), we need to remove some value from
yn∗ and assign it to yn∗+1 to satisfy the equations. Define
∆′ = ∆ + yn∗ . We use ∆′, yn∗−1 instead of ∆ and yn∗

in (32), to obtain the allocation for yn∗ and yn∗+1. We can
verify in this case also that each value is positive, and the
sum constraint and the group transition equations are satisfied.
Similar to the second case, we cannot immediately claim that
this result is optimal because after the adjustment, yn∗ does
not achieve its maximum value.

Next, in our second step, we focus on the assignment of
the yns and tns found in the first step to xk

ijs. In order to
make things easier to handle, in the second step, we allocate
nonzero values only to a small number of states. Specifically,
when n is odd, we assign nonzero values to states

(
n+1

2 , n−1
2

)
and

(
n−1

2 , n+1
2

)
; when n is even, we allocate yn to states(

n
2 + 1, n

2 − 1
)
,
(

n
2 − 1, n

2 + 1
)

and
(

n
2 , n

2

)
, and we allocate

tn to state
(

n
2 , n

2

)
only. The dots in Figure 4 show the states

which are assigned non-zero values. All of the remaining states
are assigned zero values, which implies that they are transient
states with zero steady state probability.

The values of nonzero xk
ijs are determined by the transition

equations. First of all, for the nonzero-valued states, we need
to make sure that they only transit to other nonzero-valued
states. Otherwise, the transition equations for the zero-valued
states will not be satisfied. Second, motivated by the symmetric
setting of the system, while assigning yn and tn to xk

ijs within
the groups, we will follow a symmetric allocation as much as
possible. Because of these two reasons, for group n where n
is odd, we split yn evenly between x1

n+1
2 , n−1

2
and x2

n−1
2 , n+1

2
,

and we split tn evenly between x3
n+1

2 , n−1
2

and x3
n−1

2 , n+1
2

when
tn 6= 0. For group n where n is even, we pick x1

n
2 +1, n

2−1 and
x2

n
2−1, n

2 +1 equal, and equal to 1
2 (yn+tn+1)θ(1−θ). Similarly,

we pick x2
n
2 , n

2
and x1

n
2 , n

2
equal and equal to 1

2yn − 1
2 (yn +

tn+1)θ(1− θ). Finally, we let x3
n
2 , n

2
= tn, if tn 6= 0.

It is easy to verify that the transition equations for all of
the states are satisfied, and xk

ijs are nonnegative as well. In
summary, there always exists a feasible allocation to satisfy
all of the transition equations with yns and tns found via the
assignment procedure in the first step.

N+2

n= 21 3 N-1

. .
 .

N-2. . .

. .
 .

2N

n*

N+1

N40

2N-1

Fig. 4. Allocation pattern within groups.

Since gk
ij = xk

ij∑3
k=1 xk

ij

, once we obtain the values of xk
ijs,

we can compute the transmission probabilities gk
ij . Let n̄

denote the largest group index n such that yn 6= 0. From
our allocation in the first step, we know that n̄ equals either
n∗ + 1 or n∗ + 2, depending the value of ∆. For the states
with nonzero-valued xk

ij , if i + j < n̄, then, when i > j, we
have g1

ij = 1; when i < j, we have g2
ij = 1; when i = j,

we have g1
ii = g2

ii = 1/2 and g3
ii = 0. If i + j > n̄, then we

have g3
ij = 1. If i + j = n̄, the transmission probabilities are

determined by the values of yn̄, tn̄ and tn̄+1, and g1
ij , g2

ij , g3
ij

will be arbitrary numbers in [0, 1].
The states with zero-valued xk

ij are transient states. There-
fore, the actual values of the transmission probabilities as-
signed to these states do not impact the stationary distribution,
and the average delay. For these transient states, in order to
be consistent with the recurrent states, when i + j ≤ n̄, we
simply let g1

ij = 1 if i > j, and let g2
ij = 1 if i < j; when

i + j > n̄, we let g3
ij = 1.

Our allocation indicates that there exists a threshold number
n̄. If the sum of the two queue lengths is greater than n̄, both
users should transmit during the slot. If the sum of the two
queue lengths is less than n̄, only the user with the longer
queue transmits one packet in a time slot; if in this case both
queues have the same length, each queue transmits one packet
while the other one keeps silent with probability 1/2.
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