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Abstract—We study the capacity regions of two-way and
multiple-access energy harvesting communication systems with
one-way wireless energy transfer. In these systems, energy re-
quired for data transmission is harvested by the users from
nature throughout the communication duration, and there is a
separate unit that enables energy transfer from the first user
to the second user with an efficiency of α. Energy harvests
are known by the transmitters a priori. We first investigate
the capacity region of the energy harvesting Gaussian two-way
channel (TWC) with one-way energy transfer. We show that the
boundary of the capacity region is achieved by a generalized
two-dimensional directional water-filling algorithm. Then, we study
the capacity region of the energy harvesting Gaussian multiple
access channel (MAC) with one-way energy transfer. We show
that if the priority of the first user is higher, then energy transfer
is not needed. In addition, if the priority of the second user is
sufficiently high, then the first user must transfer all of its energy
to the second user.

I. INTRODUCTION

We study the capacity regions of the Gaussian two-way

channel (TWC) and the Gaussian two-user multiple access

channel (MAC) with one-way energy transfer. In both sce-

narios, there are two users powered by energy harvesting

devices communicating messages to each other or to an

access point. We model these scenarios as two users having

exogenous energy arrival processes that recharge their batteries

throughout the communication duration. Additionally, one-

way energy transfer is possible: The first user can transmit

a portion of its energy to the second user through a separate

wireless energy transfer unit subject to an inefficiency (i.e.,

loss) during the transfer. Wireless energy transfer enables a

new form of cooperation which we call energy cooperation;

see also [1]. In contrast to the usual notion of cooperation,

which is at the signal level [2], energy cooperation is at the

battery energy level.

In this paper, we study optimal energy management policies

for the users in systems with energy cooperation. Assuming

that the users know the realizations of the energy arrival

processes in advance, as in the existing literature [1], [3]–

[14], we characterize the corresponding capacity regions. We

first consider the Gaussian TWC with energy transfer. We

show that the boundary of the capacity region is obtained

by a generalized two-dimensional directional water-filling
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Fig. 1. TWC with one-way energy transfer.

algorithm. This algorithm optimizes the energy levels in two

dimensions, namely the time and user dimensions, subject to

energy causality constraints. We then study the Gaussian MAC

with energy transfer. We show that if the first user has a higher

priority, then energy transfer is not needed and the boundary is

achieved by the generalized backward directional water-filling

algorithm given in [9]. Moreover, we show that if the second

user has a sufficiently high priority, then transferring all of

the energy of the first user to the second user is optimal. In

between these two extremes, some non-zero portion of the first

user’s energy is transferred to the second user.

II. TWC WITH ONE-WAY ENERGY TRANSFER

We consider a Gaussian TWC as shown in Fig. 1. The

two queues at the nodes are the data and energy queues.

The energies that arrive at the nodes are saved in the corre-

sponding energy queues. The data queues of both users always

carry some data packets. The physical layer is a memoryless

Gaussian TWC [15] where the channel inputs and outputs are

x1, x2 and y1, y2, respectively. The input-output relations are

y1 = x1 + x2 + n1 and y2 = x1 + x2 + n2 where n1 and

n2 are independent Gaussian noises with zero-mean and unit-

variance. We assume that the time is slotted and there are a

total of T equal length slots. In slot t, the first and second

users harvest energy in amounts Et and Ēt, respectively.

There is a separate one-way wireless energy transfer unit

from the first user to the second user with efficiency 0 ≤

α ≤ 1: When the first user transfers δi amount of energy

to the second user, δi amount of energy exits the first user’s

energy queue and αδi amount of energy enters the second

user’s energy queue in the same slot. The power policy of user



1 is composed of the sequences P, δ, and the power policy of

user 2 is the sequence P̄.

For both users, the energy that has not arrived yet cannot

be used for data transmission or energy transfer. In addition,

energy transfer amounts cannot be larger than the harvested

energy. These constraints yield the following set F of feasible

power control and energy transfer policies:

F =
{

(δ,P, P̄) :

k
∑

i=1

Pi ≤

k
∑

i=1

(Ei − δi), ∀k

k
∑

i=1

P̄i ≤

k
∑

i=1

(Ēi + αδi), ∀k

k
∑

i=1

δi ≤

k
∑

i=1

Ei, ∀k
}

(1)

For the Gaussian TWC with individual power constraints P1

and P2, rate pairs (R1, R2) with R1 ≤ 1
2 log (1 + P1), R2 ≤

1
2 log (1 + P2) are achievable [15]. For a fixed energy transfer

vector δ, and feasible power control policies P and P̄, the set

of achievable rates is:

Cδ(P, P̄) =
{

(R1, R2) : R1 ≤

T
∑

i=1

1

2
log (1 + Pi)

R2 ≤

T
∑

i=1

1

2
log (1 + P̄i)

}

(2)

The notation shows the dependence of the region on the energy

transfer vector δ. This region is shown in Fig. 2 for different

values of δ. Each of these regions are rectangles of the form

Ri ≤ Ci where Ci is the maximum throughput achieved for

user i found by maximizing (2) constrained to the feasibility

constraints F . As δ is increased, energy is transferred from

user 1 to user 2 therefore C1 decreases while C2 increases.

By taking the union of the regions over all possible energy

transfer vectors and power policies for the users, we obtain

the capacity region of the Gaussian TWC as:

C(E, Ē) =
⋃

(δ,P,P̄)∈F

Cδ(P, P̄) (3)

III. CAPACITY REGION OF THE GAUSSIAN TWC

In this section, we characterize the capacity region as well

as the optimal power allocation and energy transfer policies.

We start by noting that the capacity region is convex.

Lemma 1 C(E, Ē) is a convex region.

Since C(E, Ē) is convex, each boundary point can be found

by solving the following weighted rate maximization problem:

max
P̄i, Pi, δi

T
∑

i=1

θ1
1

2
log (1 + Pi) + θ2

1

2
log (1 + P̄i)

s.t. (δ,P, P̄) ∈ F (4)

The problem in (4) is a convex optimization problem as the

objective function is concave and the feasible set is a convex
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Fig. 2. Capacity region of the Gaussian TWC.

set [16]. We write the Lagrangian function for (4) as

L =−

T
∑

i=1

θ1 log (1 + Pi) + θ2 log (1 + P̄i)

+

T
∑

k=1

µk

(

k
∑

i=1

Pi − (Ei − δi)

)

+

T
∑

k=1

ηk

(

k
∑

i=1

P̄i − (Ēi + αδi)

)

+

T
∑

k=1

γk

(

k
∑

i=1

δi − Ei

)

−

T
∑

k=1

ρkδk (5)

The Lagrange multiplier ρk is due to the constraint δk ≥ 0. We

exclude the non-negativity constraints for Pi and P̄i as Pi and

P̄i are always non-zero in the optimal policy for θ1, θ2 > 0.

Similarly, we eliminate the constraints
∑k

i=1 δi ≤
∑k

i=1 Ei

and the multipliers γk in the following analysis since these

constraints can never be satisfied with equality in the optimal

policy for the Gaussian TWC for θ1, θ2 > 0, as that would

require Pi = 0 for some i. However, we note that these

constraints and the multipliers γk play an important role

for the analysis of the capacity region of the MAC and

hence we reinstate these constraints when necessary. The KKT

conditions for the case of TWC are:

−
θ1

1 + Pi

+

T
∑

k=i

µk = 0, ∀i (6)

−
θ2

1 + P̄i

+

T
∑

k=i

ηk = 0, ∀i (7)

T
∑

k=i

µk − α

T
∑

k=i

ηk − ρi = 0, ∀i (8)

with the additional complementary slackness conditions as:

µk

(

k
∑

i=1

Pi − (Ei − δi)

)

= 0, ∀k (9)

ηk

(

k
∑

i=1

P̄i − (Ēi + αδi)

)

= 0, ∀k (10)

ρkδk = 0, ∀k (11)



From (6), (7) and (8) we get:

Pi =
θ1

∑T

k=i µk

− 1, ∀i (12)

P̄i =
θ2

∑T

k=i ηk
− 1, ∀i (13)

ρi =
T
∑

k=i

µk − α

T
∑

k=i

ηk, ∀i (14)

We will give the solution for general θ1, θ2 > 0 in the

sequel. Before that, we note that in the extreme case when

θ2 = 0, the problem reduces to maximizing the first user’s

throughput only and hence any energy transfer is strictly sub-

optimal, i.e., δ = 0 is optimal. This corresponds to point 1

in Fig. 2. Similarly, when θ1 = 0, the problem reduces to

maximizing the second user’s throughput only and the first

user must transfer all of its energy to the second user, i.e.,

δ = E is optimal. This corresponds to point 3 in Fig. 2.

When θ1, θ2 > 0, we obtain the points between points 1 and

3 in Fig. 2. In this case, for a given energy transfer profile

δ1, . . . , δT , the optimization problem can be separated into

two optimization problems, each only in terms of the power

control policy of the corresponding user.

Lemma 2 The optimal power sequences P ∗
i and P̄ ∗

i are

monotonically increasing sequences: P ∗
i+1 ≥ P ∗

i , P̄ ∗
i+1 ≥ P̄ ∗

i .

Next, we provide the necessary optimality condition for a

non-zero energy transfer.

Lemma 3 For the optimal power sequences P ∗
i , P̄

∗
i and en-

ergy transfer sequence δ∗i , if δ∗i 6= 0 for a slot i, then,

1 + P ∗
i

1 + P̄ ∗
i

=
θ1

θ2α
(15)

Proof: From (12)-(14) we have

1 + P ∗
i

1 + P̄ ∗
i

=
θ1
∑T

k=i ηk

θ2(α
∑T

k=i ηk + ρi)
(16)

If there is a non-zero energy transfer, δi 6= 0, we have from

(11), ρi = 0. Therefore, (15) must be satisfied if δi 6= 0. �

In order to devise an algorithmic solution, we apply a

change of variable P̃i = P̄i

α
and re-write the optimization

problem in terms of Pi, P̃i, δi as follows:

max
P̃i, Pi, δi

T
∑

i=1

θ1
1

2
log (1 + Pi) + θ2

1

2
log (1 + αP̃i)

s.t.

k
∑

i=1

Pi ≤

k
∑

i=1

(Ei − δi), ∀k

k
∑

i=1

P̃i ≤

k
∑

i=1

(

Ēi

α
+ δi

)

, ∀k

k
∑

i=1

δi ≤

k
∑

i=1

Ei, ∀k (17)

The optimal power allocation for this problem is:

P ∗
i = θ1νi − 1, ∀i (18)

P̃ ∗
i = θ2ν̃i −

1

α
, ∀i (19)

where νi and ν̃i in slot i are defined by

νi =
1

∑T

k=i µk

and ν̃i =
1

∑T

k=i ηk
(20)

The power level expressions in (18)-(19) lead to a direc-

tional water-filling interpretation [5]. In particular, we note that

energy has to be jointly allocated in time and user dimensions

together. This calls for a two-dimensional directional water-

filling algorithm where energy is allowed to flow in two

dimensions, from left to right (in time) and from up to down

(among users). We utilize right permeable taps to account for

energy which will be used in the future and down permeable

taps to account for energy that will be transferred from user 1
to user 2. We see from the KKT optimality conditions that

νi = ν̃i in slots where there is non-zero energy transfer.

We note that in the original problem, this implies that if

some energy is transferred, then the power levels in that slot

need to satisfy (15). The base levels for users 1 and 2 are

1 and 1
α

, respectively. Moreover, to facilitate the water flow

interpretation, we scale the energy arrivals of user 2 by 1
α

as

seen in (17). If the resulting water levels are higher for user

1 or not monotonically increasing in time for both users, then

water has to flow until the levels are balanced.

While finding the balanced water levels, the two dimensions

of the water flow (i.e., in time and among users) are coupled

and therefore it is not easy to determine beforehand which taps

will be open or closed in the optimal solution. In particular,

the water flow of user 2 from time slot i to time slot i + j,

j > 0, may become redundant if some energy is transferred

from user 1. To circumvent this difficulty, we let each tap

(right/down permeable) have a meter measuring the water that

has already passed through it and we allow that tap to let the

water flow back if an update in the allocation necessitates

it. This way, we keep track of the source of the energy and

whether it is transferred to future time slots or to the other

user. First, we fill energy into the slots with all taps closed.

Then, we open only the right permeable taps and perform

directional water-filling for both users individually [5]. Then,

we open the down taps one by one in a backward fashion. If

water flows down through a tap, the amount is measured by the

meter. Water levels in the slots connected by the bidirectional

horizontal taps need to be equal. Whenever water flows down

through a down permeable tap, the water levels must satisfy

the proportionality relationship in (15). When the water levels

are properly balanced, the optimal solution is obtained.

IV. MAC WITH ONE-WAY ENERGY TRANSFER

In this section, we consider the MAC scenario as shown in

Fig. 3. In MAC, the received signal is y = x1 +x2+n where

x1 and x2 are signals of user 1 and user 2, respectively, and n

is a Gaussian noise with zero-mean and unit-variance. For the



Receiver

energy

queue

energy

δiEi Ēi
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Fig. 3. MAC with one-way energy transfer.

Gaussian two-user MAC with individual power constraints P1

and P2, rate pairs (R1, R2) with R1 ≤ 1
2 log (1 + P1), R2 ≤

1
2 log (1 + P2), R1+R2 ≤ 1

2 log (1 + P1 + P2) are achievable

[17]. For a fixed energy transfer vector δ, and feasible power

control policies P and P̄, the set of achievable rates is a

pentagon defined as [9]:

Cδ(P, P̄) =
{

(R1, R2) :R1 ≤

T
∑

i=1

1

2
log (1 + Pi)

R2 ≤

T
∑

i=1

1

2
log (1 + P̄i)

R1+R2 ≤

T
∑

i=1

1

2
log (1 + P̄i + Pi)

}

(21)

For each feasible (P, P̄, δ) the region is a pentagon. The

capacity region of the Gaussian MAC with energy transfer

is the union over all feasible power allocations and energy

transfer profiles:

C(E, Ē) =
⋃

(δ,P,P̄)∈F

Cδ(P, P̄) (22)

where F is given in (1). This region is shown in Fig. 4.

V. CAPACITY REGION OF THE GAUSSIAN MAC

In this section, we characterize the capacity region of the

Gaussian MAC with one-way energy transfer. First, we note

that the capacity region is convex.

Lemma 4 C(E, Ē) is a convex region.

Since the region is convex, each boundary point is a solution

to maxR∈CM θR [18] for some θ = [θ1, θ2]. We examine two

cases separately, θ1 ≥ θ2 and θ1 < θ2.

A. θ1 ≥ θ2

We show that when θ1 ≥ θ2, no energy transfer from user

1 to user 2 is needed. Note that as θ1 ≥ θ2, the boundary

points between 1, 2 and 3 in Fig. 4 are found by solving the

α = 1

1

R1

2

3

4 R24

α < 1

Fig. 4. Capacity region of the Gaussian MAC.

following problem:

max
P̄i, Pi, δi

T
∑

i=1

(θ1 − θ2)
1

2
log (1 + Pi) + θ2

1

2
log (1 + P̄i + Pi)

s.t. (δ,P, P̄) ∈ F (23)

The problem in (23) is a convex optimization problem and the

corresponding KKT conditions are:

−
θ1 − θ2

1 + Pi

−
θ2

1 + Pi + P̄i

+
T
∑

k=i

µk = 0, ∀i (24)

−
θ2

1 + Pi + P̄i

+

T
∑

k=i

ηk = 0, ∀i (25)

T
∑

k=i

µk − α

T
∑

k=i

ηk +

T
∑

k=i

γk − ρi = 0, ∀i (26)

Since θ1 ≥ θ2, from (24)-(25), we have
∑T

k=i µk ≥
∑T

k=i ηk,

which is satisfied with equality iff θ1 = θ2. This together with

(26) implies that ρi −
∑T

k=i γk ≥ 0, which is satisfied with

equality iff θ1 = θ2 and α = 1. Therefore, unless we have

exactly θ1 = θ2 and α = 1, then we must have ρi > 0 for all i.

This together with the complementary slackness conditions in

(11) implies that we must have δi = 0 for all i, i.e., no energy

transfer is needed. However, when θ1 = θ2 and additionally if

α = 1, then there may exist multiple different optimal energy

transfer profiles, including the one with no energy transfer.

Since energy transfer is not needed, optimal power control

policies for the two users are the same as those in the energy

harvesting MAC with no energy transfer and can be found by

the generalized backward directional water-filling algorithm

described in [9]. That is, the capacity region boundary from

point 1 to point 3 in Fig. 4 is found by the algorithm in [9].

Specifically, for θ1 = θ2, we have ηk = µk for all k and

the sum-rate optimal power policies are obtained by applying

single-user directional water-filling algorithm to the sum of

the energy profiles of the users [9].

B. θ1 < θ2

Here, we consider the remaining parts of the boundary,

namely the points from point 3 to point 4 in Fig. 4. In this



case, we need to solve the following optimization problem:

max
P̄i, Pi, δi

T
∑

i=1

(θ2 − θ1) log (1 + P̄i) + θ1 log (1 + P̄i + Pi)

s.t. (δ, P̄, P) ∈ F (27)

which is a convex optimization problem and the corresponding

KKT conditions are:

−
θ1

1 + Pi + P̄i

+

T
∑

k=i

µk = 0, ∀i (28)

−
θ2 − θ1

1 + P̄i

−
θ1

1 + Pi + P̄i

+

T
∑

k=i

ηk = 0, ∀i (29)

T
∑

k=i

µk − α

T
∑

k=i

ηk +

T
∑

k=i

γk − ρi = 0, ∀i (30)

We do not have an analytical closed form solution for (28)-

(30). Since (27) is a convex optimization problem, standard

numerical methods for convex optimization may be employed.

We find that the solution of (27) has a simple form in some

special cases, which we investigate next.

When α = 1, we find that the optimal solution of (27)

requires all the energy of user 1 transferred to user 2. To verify

this fact, we note from (28)-(29) that ηT > µT , since θ2 > θ1.

Combining this with (30), we obtain γT −ρT > 0. Note that if
∑T

i=1 δi <
∑T

i=1 Ei, then γT = 0 and hence ρT < 0, which

is not possible. Thus, in the optimal solution, we must have
∑T

i=1 δi =
∑T

i=1 Ei. Therefore, user 1 should not transmit any

data, and instead should transfer all of its energy to user 2 by

the end of T slots. This policy corresponds to point 4 in Fig. 4.

On the other hand, sum-rate optimal point, point 3, achieves

the same throughput as point 4. This implies that when α = 1,

points 2, 3 and 4 in Fig. 4 lie on the 45o line. In particular,

the optimal throughput of user 2, which is obtained by single-

user throughput maximization subject to harvested energies of

user 2 plus the harvested energies of user 1, coincides with

the optimal sum-throughput.

When α < 1, points 2, 3 and 4 in Fig. 4 are not on the

same line. However, we observe that when θ2
θ1

is sufficiently

large, user 1 transfers all of its energy to user 2. In order to

verify this claim, we note that, if user 1 transfers some but

not all of its energy at the end of T slots, then γT = 0. In this

case, from (28)-(30) and as ρT ≥ 0, we have

1 + P̄T

1 + P̄T + PT

≥
α(θ2 − θ1)

(1− α)θ1
(31)

Since 1+P̄T

1+P̄T+PT

< 1, we conclude that if
α(θ2−θ1)
(1−α)θ1

≥ 1, then

(31) cannot be satisfied which forces all of the energy of user 1

to be transferred to user 2 so that γT > 0. Note that
α(θ2−θ1)
(1−α)θ1

≥

1 is equivalent to θ2
θ1

≥ 1
α

. Hence, if θ2
θ1

≥ 1
α

, in the optimal

solution, user 1 transfers all of its energy to user 2. When

1 ≤ θ2
θ1

≤ 1
α

, some non-zero portion of the first user’s energy

may need to be transferred to the second user in the optimal

solution.

VI. CONCLUSIONS

In this paper, we considered the Gaussian TWC and the

Gaussian two-user MAC under energy harvesting and one-way

wireless energy transfer conditions. For the Gaussian TWC,

we showed that a generalized two-dimensional directional

water-filling algorithm, which distributes the overall harvested

energy optimally over the time and user dimensions subject

to energy causality constraints achieves the boundary of the

capacity region. For the Gaussian two-user MAC, with energy

transfer from the first user to the second user, we showed that,

if the first user has higher priority over the second user, then

energy transfer is not needed. In addition, when the second

user’s priority is sufficiently high, the first user must transfer

all of its energy to the second user.
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