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Abstract—We consider the transmission completion time min-
imization problem in a single-user energy harvesting wireless
communication system. In this system, both the data packets and
the harvested energy are modelled to arrive at the source node
randomly. Our goal is to adaptively change the transmission rate
according to the traffic load and available energy, such that the
transmission completion time is minimized. Under a deterministic
system setting, we assume that the energy harvesting times and
harvested energy amounts are known before the transmission
starts. For the data traffic arrivals, we consider two different
scenarios. In the first scenario, we assume that all bits have
arrived and are ready at the transmitter before the transmission
starts. In the second scenario we consider, packets arrive during
the transmissions with known arriving times and sizes. We
develop optimal off-line scheduling policies which minimize the
overall transmission completion time under causality constraints
on both data and energy arrivals.

I. INTRODUCTION

In this work, we consider networks where nodes are able
to harvest energy from nature. The nodes may harvest energy
through solar cells, vibration absorption devices, water mills,
thermoelectric generators, microbial fuel cells, etc. While we
will not focus on how energy is harvested, we will focus on
developing transmission methods that will take into account
the randomness both in the arrivals of the data packets as well
as in the arrivals of harvested energy. As shown in Fig. 1, we
will consider a single node, where packets arrive at random
times marked with × and energy arrives (is harvested) at
random points in time marked with ◦. In Fig. 1, Bi denotes
the number of bits in the ith arriving data packet, and Ei

denotes the amount of energy in the ith energy arrival (energy
harvesting). Our goal then will be to develop methods of
transmission to minimize the time, T , by which all of the data
packets are delivered to the destination; we call this problem
transmission completion time minimization problem. The most
challenging aspect of our optimization problem is the causality
constraints introduced by the packet and energy arrival times,
i.e., a packet may not be delivered before it has arrived and
energy may not be used before it is harvested.

The trade-off relationship between delay and energy has
been well investigated in traditional battery powered (un-
rechargeable) systems. References [1]–[6] investigate energy

This work was supported by NSF Grants CCF 04-47613, CCF 05-14846,
CNS 07-16311 and CCF 07-29127.

T

E0

· · ·

EKE1

B0 B1 B2 BM

t0 t1 t2 tMs1 sK

r1 r2 r3 rN

· · ·

Fig. 1. System model with random packet and energy arrivals. Data packets
arrive at points denoted by × and energies arrive (are harvested) at points
denoted by ◦.

minimization problems with various deadline constraints. Ref-
erence [1] considers the problem of minimizing the energy
in delivering all packets to the destination by a deadline. It
develops a lazy scheduling algorithm, where the transmission
times of all packets are equalized as much as possible, subject
to the deadline and causality constraints, i.e, all packets
must be delivered by the deadline and no packet may be
transmitted before it has arrived. This algorithm also elongates
the transmission time of each packet as much as possible,
hence the name, lazy scheduling. Under a similar system
setting, [2] proposes an interesting novel calculus approach
to solve the energy minimization problem with individual
deadlines for each packet. Reference [3] develops dynamic
programming formulations and optimality conditions for a
situation where channel gain varies stochastically over time.
Reference [4] considers energy-efficient packet transmission
with individual packet delay constraints over a fading channel,
and develops a recursive algorithm to find an optimal off-
line schedule. This optimal off-line scheduler equalizes the
energy-rate derivative function as much as possible subject
to the deadline and causality constraints. References [5] and
[6] extend the single-user problem to multi-user scenarios.
Under a setting similar to [5], we investigate the average
delay minimization problem with a given amount of energy,
and develop iterative algorithms and analytical solutions under
various data arrival assumptions in [7].

While delay minimization under a given energy constraint
[7] is an important problem, it yields an intractable mathe-
matical problem, due to varying forms the cost function takes,
as a result of queueing times of previous packets affecting
the delays of the future packets; see [7]. When we consider
the additional energy causality constraints to be imposed in
an energy harvesting system, the delay minimization problem
subject to a given energy arrival profile, will become even
more difficult. This becomes more evident, if one considers
that, the delay minimization problem studied in [7] for a given



energy constraint may be viewed as a special case of an energy
harvesting system, where the energy is harvested only once
at the very beginning. Consequently, in this paper, we shift
our focus from delay minimization to the minimization of the
transmission completion time, i.e., the time when the last bit
is delivered to the destination. This is denoted by T in Fig. 1.

Specifically, we consider a single-user communication chan-
nel with an energy harvesting transmitter. We assume that
an initial amount of energy is available at t = 0. As time
progresses, certain amounts of energies will be harvested. In
this paper, we assume that the energy harvesting procedure
can be precisely predicted, i.e., that, at the beginning, we
know exactly when and how much energy will be harvested.
For the data arrivals, we consider two different scenarios. In
the first scenario, we assume that bits have already arrived
and are ready to be transmitted at the transmitter before the
transmission starts. In the second scenario, we assume that
packets arrive during the transmissions. However, as in the
case of energy arrivals, we assume that we know exactly when
and in what amounts data will arrive. Subject to the energy
and data arrival constraints, our purpose is to minimize the
transmission completion time of all bits through controlling
the transmission rate.

This is similar to the energy minimization problem in [1],
where the objective is to minimize the energy consumption
with a given deadline constraint. In this paper, minimizing
the transmission completion time is akin to minimizing the
deadline in [1]. However, the problems are different, because,
we do not know the exact amount of energy to be used
in the transmissions, even though we know the times and
amounts of harvested energy. This is because, intuitively,
using more energy reduces the transmission time, however,
using more energy entails waiting for energy arrivals, which
increases the total transmission time. Therefore, minimizing
the transmission completion time in the system requires a
sophisticated utilization of the harvested energies. To that end,
we develop an algorithm, which first obtains a good lower
bound for the final transmission duration at the beginning, and
performs energy allocation based on this lower bound. The
procedure works progressively until all of the transmission
rates are determined. We prove that the transmission policy
obtained through this algorithm is optimal.

II. SCENARIO I: BITS READY BEFORE TRANSMISSION

We assume that there are a total of B0 bits available at the
transmitter at time t = 0. We also assume that there is E0

amount of energy available at time t = 0, and at times s1,
s2, . . ., sK , we have energies harvested with amounts E1, E2,
. . . , EK , respectively. This system model is shown in Fig. 2.
Our objective is to minimize the transmission completion time
of these bits with these energies.

We assume that the transmitter can adaptively change its
transmission power/rate according to the available energy and
the remaining number of bits. We assume that the transmission
rate and transmit power are related through a function, g(p),
i.e., r = g(p). We assume that g(p) satisfies the following
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Fig. 2. System model with all bits available at the beginning. Energies arrive
at points denoted by ◦.

properties: i) g(0) = 0 and g(p) → ∞ as p → ∞, ii) g(p)
increases monotonically in p, iii) g(p) is strictly concave in p,
iv) g(p) is continuously differentiable, and v) g(p)/p decrease
monotonically in p. Properties i)-iii) guarantee that g−1(r)
exists when r ≥ 0, and that g−1(r) is strictly convex over
the region. Property v) implies that for a fixed amount of
energy, the number of bits that can be transmitted increases
as the transmission duration increases. It can be verified that
these properties are satisfied in many systems with realistic
encoding/decoding schemes, such as optimal random coding
in single-user additive white Gaussian noise channel, where
g(p) = 1

2 log(1 + p).
Assuming the transmitter changes its transmit power N

times before it finishes the transmission, denote the sequence
of transmission powers as p1, p2, . . ., pN , and the correspond-
ing transmission durations of each power as l1, l2, . . ., lN ,
respectively. Then, the energy consumed up to time t, denoted
as E(t), and the total number of bits departed up to time t,
denoted as B(t), can be related through function g as follows:

E(t) =
ī∑

i=1

pili + pī+1

(
t−

ī∑

i=1

li

)
(1)

B(t) =
ī∑

i=1

g(pi)li + g(pī+1)

(
t−

ī∑

i=1

li

)
(2)

where ī = max{i :
∑i

j=1 lj ≤ t}. Then, the transmission
completion time minimization can be formulated as:

min
p,l

T

s.t. E(t) ≤
∑

i:ti<t

Ei, 0 ≤ t ≤ T

B(T ) = B0 (3)

First, we will determine some properties of the optimum
solution, in the following three lemmas.

Lemma 1 Under the optimal solution, the transmit powers
increase monotonically, i.e., p1 ≤ p2 ≤ · · · ≤ pN .

Proof: Assume that the powers do not increase monotonically,
i.e., that we can find two powers such that pi > pi+1. The total
energy consumed over this duration is pili + pi+1li+1. Let

p′i = p′i+1 =
pili + pi+1li+1

li + li+1
, r′i = r′i+1 = g(p′i) (4)

Then, we have p′i ≤ pi, p′i+1 ≥ pi+1. Since p′ili ≤ pili,
the energy constraint is still satisfied, thus the new energy
allocation is feasible. We use r′i, r

′
i+1 to replace ri, ri+1 in the

transmission policy, and keep the rest of the rates the same.



Then, the total number of bits transmitted over the duration
li + li+1 becomes

r′ili + r′i+1li+1

= g

(
pili + pi+1li+1

li + li+1

)
(li + li+1)

≥ g (pi)
li

li + li+1
(li + li+1) + g (pi+1)

li+1

li + li+1
(li + li+1)

= rili + ri+1li+1 (5)

where the inequality follows from the fact that g(p) is concave
in p. Therefore, the new policy departs more bits by time∑i+1

j=1 lj . Keeping the remaining transmission rates the same,
the new policy will finish the entire transmission over a shorter
duration. Thus, the original policy could not be optimal. There-
fore, the optimal policy must have monotonically increasing
rates (and powers). ¥

Lemma 2 The transmission power/rate remains constant be-
tween energy harvests, i.e., the power/rate only potentially
changes when new energy arrives.

Proof: Assume that the transmitter changes its transmission
rate between two energy harvesting instances si, si+1. Denote
the rates as rn, rn+1, and the instant when the rate changes
as s′i, as in Fig. 3. Now, consider the duration [si, si+1). The
total energy consumed during the duration is pn(s′i − si) +
pn+1(si+1 − s′i). Let

p′ =
pn(s′i − si) + pn+1(si+1 − s′i)

si+1 − si
, r′ = g(p′) (6)

Use r′ to be the new transmission rate over [si, si+1), and
keep the rest of the rates the same. It is easy to check that the
energy constraints are satisfied under this new policy, thus it is
feasible. On the other hand, the total number of bits departed
over this duration under this new policy is

r′(si+1 − si)

= g

(
pn(s′i − si) + pn+1(si+1 − s′i)

si+1 − si

)
(si+1 − si)

≥
(

g(pn)
s′i − si

si+1 − si
+ g(pn+1)

si+1 − s′i
si+1 − si

)
(si+1 − si)

= rn(s′i − si) + rn+1(si+1 − s′i) (7)

where the inequality follows from the fact that g(p) is a
concave function of p. Therefore, the total number of bits
departed under the new policy is larger than that under the
original policy. If we keep all of the remaining rates the same,
the transmission will be completed at an earlier time. This
conflicts with the optimality of the policy. ¥

Lemma 3 Whenever the transmission rate changes, the en-
ergy consumed up to that instant equals the energy harvested
up to that instant.

Proof: From Lemma 2, we know that the transmission rate
can change only at certain energy harvest instances. Assume
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Fig. 3. The rate must remain constant between energy harvests.

that the transmission rate changes at si, however, the energy
consumed by si, which is denoted as E(si), is less than∑i−1

j=0 Ej . We denote the energy gap by ∆. Denote the rates
before and after ti by rn, rn+1. Now, we can always have two
small amounts of perturbations δn, δn+1, on the corresponding
transmit powers, such that

p′n = pn + δn (8)
p′n+1 = pn+1 − δn+1 (9)
δnln = δn+1ln+1 (10)

We also make sure that δ is small enough such that the
total energy δnln < ∆, and p′n ≤ p′n+1. If we keep the
transmission rates over the rest of the duration the same, under
the new transmission policy, the energy allocation will still be
feasible. The total number of bits departed over the duration
(
∑n−1

i=1 li,
∑n+1

i=1 li) is

g(p′n)ln + g(p′n)ln+1 ≥ g(pn)ln + g(pn)ln+1 (11)

where the inequality follows from the concavity of g(p), and
pnln + pn+1ln+1 = p′nln + p′n+1ln+1, pn ≤ p′n ≤ p′n+1 ≤
pn+1, as in Fig. 4. This conflicts with the optimality of the
original allocation. ¥

We are now ready to characterize the optimum transmission
policy. In order to simplify the expressions, we let i0 = 0,
and let sm+1 = T if the transmission completion time T lies
between sm and sm+1.

Theorem 1 For a given B0, and a transmission policy with
power vector p = [p1, p2, . . . , pN ] and corresponding dura-
tion vector l = [l1, l2, . . . , lN ], the policy is optimal if and
only if it has the following structure:

N∑
n=1

g(pn)ln = B0 (12)

and for n = 1, 2, . . . , N ,

in = arg min
i:si≤T

{∑i−1
j=in−1

Ej

si − sin−1

}
(13)

pn =

∑in−1
j=in−1

Ej

sin − sin−1

(14)

ln = sin − sin−1 (15)

where in is the index of the energy arrival epoch when the
power pn switches to pn+1, i.e., at t = sin , pn switches to
pn+1.

Proof: First, we prove that the optimal policy must have the
structure given above. We prove this through contradiction.
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Assume that the optimal policy, which satisfies Lemmas 1, 2
and 3, does not have the structure given above. Specifically,
assume that the optimal policy over the duration [0, sin−1) is
the same as the proposed policy, however, the transmit power
right after sin−1 , which is pn, is not the smallest average power
available starting from sin−1 , i.e., we can find another si′ ≤
siN

, such that

pn >

∑i′−1
j=in−1

Ej

si′ − sin−1

, p′ (16)

Based on Lemma 3, the energy consumed up to sin−1 is equal
to

∑in−1−1
j=0 Ej , i.e., there is no energy remaining at t = s−in−1

.
We consider two possible cases here. The first case is that

si′ < sin , as shown in Fig. 5. Under the optimal policy, the
energy required to maintain a transmit power pn over the
duration [sin−1 , si′) is pn(si′ − sin−1). Based on (16), this
is greater than the total amount of energy harvested during
[sin−1 , si′), which is

∑i′−1
j=in−1

Ej . Therefore, this energy
allocation policy is infeasible. On the other hand, if si′ > sin ,
as shown in Fig. 6, then the total amount of energy harvested
over [sin , si′) is

∑i′−1
j=in

Ej . From (16), we know

pn =

∑in−1
j=in−1

Ej

sin − sin−1

>

∑i′−1
j=in−1

Ej

si′ − sin−1

>

∑i′−1
j=in

Ej

si′ − sin

(17)

Thus, under any feasible policy, there must exist a duration
l ⊆ [sin , si′), such that the transmit power over this duration
is less than pn. This contradicts with Lemma 1. Therefore,
this policy cannot be optimal.

Next, we prove that if a policy has the structure given above,
then, it must be optimal. We prove this through contradiction.
We assume that there exists another policy with power vector
p′ and duration vector l′, and the transmission completion time
T ′ under this policy is shorter.

We assume both of the policies are the same over the dura-
tion [0, sin−1), however, the transmit policies right after sin−1 ,
which are pn and p′n, with duration ln and l′n, respectively, are
different. Based on the assumption, we must have pn < p′n.
If ln < l′n, from Lemma 3, we know that the total energy
available over [sin−1 , sin) is equal to pnln. Since pn < p′n,
p′n is infeasible over [sin−1 , sin). Thus, policy p′ could not be
optimal. Then, we consider the case if ln > l′n. If T ′ ≥ sin ,
then, the total energy spent over [sin−1 , sin) under p′ is greater
than pnln, since p′n > pn, and p′n+1 > p′n based on Lemma 1.
If T ′ < sin , since the power-rate function g is concave, the
total number of bits departed over [sin−1 , sin) under p is
greater than that under p′. Thus, since policy p′ cannot depart
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Fig. 5. Case I: si′ < sin .
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Fig. 6. Case II: si′ > sin .

B0 bits over T ′, it is not optimal.

In summary, a policy is optimal if and only if it has the
structure given above. This completes the proof. ¥

Therefore, we note that if the overall transmission duration
T is known, then the optimal transmission policy is known via
Theorem 1. On the other hand, the overall transmission time T
is what we want to minimize, and we do not know its optimal
value up front. Consequently, we do not know up front which
energy harvests will be utilized. For example, if the number
of bits is small, and E0 is large, then, we can empty the queue
before the arrival of E1, thus, the rest of the energy arrivals
are not necessary. Therefore, as a first step, we will obtain a
good lower bound on the optimal transmission duration.

First, we compute the amounts of energy required to finish
the entire transmission before s1, s2, . . ., sK , respectively, at
a constant rate. We denote these as Ai:

Ai = g−1

(
B0

si

)
si, i = 1, 2, . . . ,K (18)

Then, we compare Ai with
∑i−1

j=0 Ej , and find the smallest i

such that Ai ≤
∑i−1

j=0 Ej . We denote this i as ĩ1. If no such
ĩ1 exists, we let ĩ1 = K + 1.

Now, we assume that we can use
∑ĩ1−1

j=0 Ej to transmit all
B0 bits at a constant rate. We allocate the energy evenly to
these bits, and the transmission time T1 is the solution of

g




∑ĩ1−1
j=0 Ej

T


T = B0 (19)

and the corresponding constant transmit power is

p1 =

∑ĩ1−1
j=0 Ej

T1
(20)

Next, we compare p1 with
∑i−1

j=0 Ej

si
for every i < ĩ1. If p1 is

smaller than every term, then, maintaining p1 is feasible, and
the optimal policy is to transmit at a constant transmission
rate g(p1) with duration T1, which gives the smallest possible
transmission completion time, i1 = ĩ1. Otherwise, maintaining
p1 is infeasible under the given energy arrival realization.



Thus, we update

i1 = arg min
i<ĩ1

{∑i−1
j=0 Ej

si

}
, p1 =

∑i1−1
j=0 Ej

si1

(21)

i.e., over the duration [0, si1), we choose to transmit with
power p1 to make sure that the energy consumption is feasible.
Then, at time t = si1 , the total number of bits departed is
g(p1)si1 , and the remaining number of bits is B0 − g(p1)si1 .
Subsequently, with initial number of bits B0 − g(p1)si1 , we
start from si1 , and get another lower bound on the overall
transmission duration T2, and repeat the procedure above.
Through this procedure, we obtain p2, p3, . . . , pN , and corre-
sponding i2, i3, . . . , iN , until we finish transmitting all of the
bits. This procedure yields an optimum transmission strategy
as proved in the following theorem.

Theorem 2 The allocation procedure described above gives
the optimal transmission policy.

Proof: Let T be the final transmission duration given by the
allocation procedure. Then, we have B(T ) = B0. In order to
prove that the allocation is optimal, we need to show that the
final transmission policy has the structure given in Theorem 1.
We first prove that p1 satisfies (14). Then, we can similarly
prove that p2, p3, . . . satisfy (14).

We know that if T = T1, then it is the minimum possible
transmission completion time. We know that this transmit
policy will satisfy the structural properties in Theorem 1.
Otherwise, the final optimal transmission time T is greater
than T1, and more harvested energy may be utilized to transmit
the remaining bits. From the allocation procedure, we have

p1 ≤
∑i−1

j=0 Ej

si
, ∀i < ĩ1 (22)

In order to prove that p1 satisfies (14), we need to show that

p1 ≤
∑i−1

j=0 Ej

si
, ∀i : sĩ1

≤ si ≤ T (23)

If we keep transmitting with power p1, then at T ′1 =∑ĩ1−1
j=0 Ej

p1
, the total number of bits departed will be

g(p1)T ′1 ≥ g




∑ĩ1−1
j=0 Ej

T1


T1 = B0 (24)

where the inequality follows from the assumption that g(p)/p
decreases in p. Then, (22) guarantees that this is a feasible pol-
icy. Thus, under the optimal policy, the transmission duration
T will be upper bounded by T ′1, i.e.,

T ≤
∑ĩ1−1

j=0 Ej

p1
(25)

which implies

p1 ≤
∑ĩ1−1

j=0 Ej

T
(26)

tT1

· · ·p1

· · · · · ·· · ·

si1
Ts

ĩ1−1
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ĩ1

Fig. 7. Case I: T ≤ sĩ1
.

If T ≤ sĩ1
, as shown in Fig. 7, no future harvested energy is

utilized for the transmissions. Then, (26) guarantees that (23)
is satisfied.

If T > sĩ1
, as shown in Fig. 8, additional energy harvested

after sĩ1
should be utilized to transmit the data. We next prove

that (23) still holds through contradiction. Assume that there
exists i′ with sĩ1

≤ si′ ≤ T , such that (23) is not satisfied,
i.e.,

p1 >

∑i′−1
j=0 Ej

si′
, p′ (27)

Then,
∑i′−1

j=0 Ej

p1
< si′ (28)

Combining this with (25), we have T < si′ , which contradicts
with the assumption that si′ ≤ T . Thus, (23) holds, p1 satisfies
the requirement of the optimal structure in (22).

We can then prove using a similar argument that p2, p3

also satisfy the properties of the optimal solution. Since with
fixed T , the policy with the optimal structure is unique, this
procedure gives us the unique optimal transmission policy. ¥

III. SCENARIO II: RANDOM BIT ARRIVALS

In this section, we consider the situation where bits arrive
during the transmissions. We assume that there is an amount
of E0 energy available at time t = 0, and at times s1, s2,
. . ., sK , energy is harvested in amounts E1, E2, . . . , EK ,
respectively. We also assume that at t = 0, we have B0 bits
available, and at times t1, t2, . . ., tM , bits arrive in amounts
B1, B2, . . . , BM , respectively. The system model is shown
in Fig. 1. Our objective is again to minimize the transmission
completion time, which is defined as the time that the last bit
is delivered to the destination.

Denote the sequence of transmission powers as p1, p2, . . .,
pN , and the corresponding transmission durations as l1, l2,
. . ., lN . Then, the optimization problem becomes

min
p,l

T

s.t. E(t) ≤
∑

i:si<t

Ei, 0 ≤ t ≤ T

B(t) ≤
∑

i:ti<t

Bi, 0 ≤ t ≤ T

B(T ) =
M∑

i=0

Bi (29)

where E(·), B(·) are defined in (1) and (2). We again
determine the properties of the optimal transmission policy
in the following three lemmas.
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Lemma 4 Under the optimal policy, the transmission rates
increase monotonically, i.e., r1 ≤ r2 ≤ · · · ≤ rN .

Lemma 5 The transmission power/rate remain constant be-
tween two event epoches, i.e., the rate only potentially changes
when new energy is harvested or new bits arrive.

Lemma 6 If the transmission rate changes at an energy
harvesting epoch, then the energy consumed up to that epoch
equals the energy harvested up to that epoch; if the transmis-
sion rate changes at a bit arrival epoch, the number of bits
departed up to that epoch equals the number of bits arrived
up to that epoch.

Lemmas 4, 5 and 6 can be proved using methods similar
to those used in the proofs of Lemmas 1, 2, and 3.

We develop a similar procedure to find the optimal transmis-
sion policy. The basic idea is to keep the transmit power/rate
as constant as possible throughout the entire transmission
duration. Because of the additional casuality constraints due to
data arrivals, we need to consider both the average data arrival
rate as well as the average power the system can support for
feasibility.

If sK ≤ tM , i.e., bits have arrived after the last energy
harvest, then, all of the harvested energy will be used. First, we
assume that we can use these energies to maintain a constant
rate, and the transmission duration will be the solution of

g

(∑K
j=0 Ej

T

)
T =

M∑

j=0

Bj (30)

Then, we check whether this constant power/rate is feasible.
We check the availability of the energy, as well as the available
number of bits. Let

i1e = arg min
1≤i≤K

{∑i−1
j=0 Ej

si

}
, p1 =

∑i1e−1
j=0 Ej

si
(31)

i1b = arg min
1≤i≤M

{∑i−1
j=0 Bj

ti

}
, r1 =

∑i1b−1
j=0 Bj

ti
(32)

We compare min(p1, g
−1(r1)) with

∑K
j=0 Ej

T . If the former
is greater than the latter, then the constant transmit power∑K

j=0 Ej

T is feasible. Thus, we achieve the minimum possi-
ble transmission completion time T . Otherwise, the constant
power transmission is not feasible. We pick the transmit power
to be the smaller of p1 and g−1(r1), and the duration to be
the one associated with the smaller transmit power. We repeat
this procedure until all the bits are transmitted.

If sK > tM , then, as in the first scenario where bits have
arrived and are ready before the transmission starts, some of
the harvested energy may not be utilized to transmit the bits.
In this case also, we need to get a lower bound for the final
transmission completion time. Let sn be the energy harvesting
epoch right after tM . Then, starting from sn, we compute the
energy required to transmit

∑M
j=0 Bj bits at a constant rate

by si, sn ≤ si ≤ sK , and compare them with the total energy
harvested up to that epoch, i.e.,

∑i−1
j=0 Ej . We identify the

smallest i such that the required energy is smaller than the
total harvested energy, and denote it by ĩ1. If no such ĩ1 exists,
we let ĩ1 = K + 1.

Now, we assume that we can use
∑ĩ1−1

j=0 Ej to transmit∑M
j=0 Bj bits at a constant rate. We allocate the energy evenly

to these bits, and the overall transmission time T1 is the
solution of

g




∑ĩ1−1
j=0 Ej

T


T =

M∑

j=0

Bj (33)

and the corresponding constant transmit power is

p1 =

∑ĩ1−1
j=0 Ej

T1
(34)

Next, we compare p1 with
∑i−1

j=0 Ej

si
for every i < ĩ1,

g−1(
∑i−1

j=0 Bj

ti
) for 1 ≤ i ≤ M , and g−1(

∑M
j=0 Bj

T1
). If p1 is

smaller than all of these terms, then, maintaining p1 is feasible
from both energy and data points of view. The optimal policy
is to keep a constant transmission rate at g(p1) with duration
T1, which is the smallest possible transmission completion
time, i1 = ĩ1. Otherwise, maintaining p1 is not feasible under
the given energy and data arrival realizations. This infeasibility
is due to causality constraints on either the energy or the
traffic, or both. Next, we identify the tightest constraint, and
update the transmit power to be the power associated with
that constraint. We repeat this procedure until all of the bits
are delivered. The optimality of this scheme can be proved
similar to the previous case.
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