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Abstract—In this paper, we consider a single-user commu-
nication system, where an energy harvesting transmitter com-
municates with a receiver over a fading wireless channel. We
design adaptive transmission policies that adapt to the random
energy arrivals at the transmitter and random fluctuations in
the channel, in order to maximize the average number of bits
transmitted by a finite deadline T . We solve for the optimum
transmission scheme using stochastic dynamic programming.
This optimal solution does not admit a closed form expression and
is computationally expensive. We then propose several suboptimal
event based adaptive transmission policies that react to the
changes in energy arrivals and fading states. We provide extensive
simulation results that compare the performances of the optimal
and proposed simpler solutions.

I. INTRODUCTION

We consider a single-user wireless communication system

with an energy harvesting transmitter. The transmitter is able

to harvest energy from nature to recharge its battery. The

energy is modelled to arrive (be harvested) at random times

and in random amounts throughout the duration of the com-

munication session. In addition, the wireless communication

channel fluctuates randomly due to fading. Our goal is to

design adaptive (online) transmission policies that adapt to

the random energy arrivals as well as random fluctuations in

the channel gain, in order to maximize the average number of

bits that can be transmitted reliably by a fixed deadline.

Energy arrivals and channel gains are stochastic processes

in time. Naturally, the battery state is causally known by the

transmitter. The transmitter has perfect causal knowledge of

the fading channel state via a feedback link from the receiver.

We also assume that the transmitter has the full knowledge

of the statistics of both the energy arrivals and the channel

variations. The transmitter uses the knowledge of the current

energy and channel states as well as their long-term statistics

to adapt its instantaneous transmit power. The transmit power,

in turn, determines the instantaneous rate of communication

through a rate-power relationship.

In addition, the battery at the transmitter is assumed to

have a finite storage capacity. This imposes another constraint

on the transmit power policy. Since the battery can store at

most a finite amount of energy, excess arriving energy will

overflow, causing waste of energy, which could otherwise be
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used for data transmission. The transmitter must minimize the

occurrence of energy overflows as much as possible.

The instantaneous rate is a concave function of the instan-

taneous power. This implies that, in a static channel, in order

to maximize the number of bits transmitted, the energy must

be spread as evenly as possible throughout the communication

duration, subject to the causality of energy usage with respect

to energy arrivals [1], [2]. The finite battery capacity constraint

limits the ability of the transmitter spread its energy evenly

over time because of the risk of losing energy at the future

energy arrivals due to battery overflows. On the other hand,

in a fading channel, in order to maximize the number of bits

transmitted, an opportunistic transmission policy that exploits

the good channel states is needed. We determine the optimal

online transmission policy that balances the needs to: spread

the energy over time, avoid battery overflows, and exploit

channel variations to the advantage of the system.

There has been recent research effort on understanding

data transmission with an energy harvesting transmitter that

has a rechargeable battery [1]–[10]. In [3], data transmission

with energy harvesting sensors is considered, and the optimal

online policy for controlling admissions into the data buffer

is derived using a dynamic programming framework. In [4],

energy management policies which stabilize the data queue

are proposed for single-user communication and under a

linear approximation, some delay optimality properties are

derived. In [5], the optimality of a variant of the back

pressure algorithm using energy queues is shown. In [6],

throughput optimal energy allocation is studied for energy

harvesting systems in a time constrained slotted setting. In [7],

information theoretically achievable rates are determined in a

single-user energy harvesting communication channel. In [1],

[2], minimization of the transmission completion time is

considered in an energy harvesting system and the optimal

solution is obtained using a geometric framework similar to the

calculus approach presented in [11]. In [8], energy harvesting

transmitters with batteries of finite energy storage capacity are

considered and the problem of throughput maximization by a

deadline is solved in a static channel. In [9], offline optimal

transmission policies for a single-user energy harvesting trans-

mitter operating in a fading channel are provided.

Energy (or rate) management for maximum rate or min-

imum energy under delay constraints has been considered

in [11]–[17]. In [12], energy minimal offline packet scheduling



is solved in a delay constrained system with channel fading.

In [13], energy minimal rate control in a delay constrained

time-varying system is obtained by using continuous time

stochastic dynamic programming. In [14], delay constrained

capacity of fading channels is found under causal feedback

using dynamic programming. In [15], capacity of a two-user

fading broadcast channel is determined under stringent delay

constraints. In [16], various energy allocation problems in solar

powered communication satellites are solved using dynamic

programming. In [17], optimal energy allocation to a fixed

number of time slots is derived under time-varying channel

gains and with offline and online knowledge of the channel

state at the transmitter.

In this paper, we study online transmission policies with the

objective of maximizing the deadline constrained throughput

under channel fluctuations and energy variations, in a contin-

uous time model. We first solve for the optimal online trans-

mission policy by using continuous time stochastic dynamic

programming [18]. The optimal policy does not admit a closed

form solution and requires excessive computation. Hence, we

consider suboptimal solutions that are computationally more

tractable. We propose several event-based online (adaptive)

algorithms which mimic optimal offline policy found for the

deterministic setting through a directional waterfilling algo-

rithm [9], [10]. These algorithms are easier to express in closed

form, and they update transmit power only when a change in

the fading level or energy arrival occurs. Finally, we provide

extensive simulation results to compare the performances of

the optimum and proposed simpler transmission policies for

practical energy arrival and fading distributions.

II. SYSTEM MODEL

We consider a single-user additive Gaussian channel in

fading with a causal channel state information (CSI) feedback

from the receiver to the transmitter as shown in Fig. 1. The

two queues at the transmitter are the data queue where data

packets are stored, and the energy queue (battery) where the

arriving (harvested) energy is stored. The energy queue can

store at most Emax units of energy. The harvested energy

is used only for data transmission, e.g., energy required for

processing is not considered.

The received signal y is given by

y =
√

hx + n (1)

where h is the (squared) fading coefficient, x is the channel

input, and n is a Gaussian random variable with zero-mean

and unit-variance. Whenever an input signal x is transmitted

with power p in an epoch of duration L, L
2 log (1 + hp) bits of

data is served out from the backlog with the cost of Lp units

of energy depletion from the energy queue. The bandwidth

is sufficiently wide so that L can take small values and we

approximate the slotted system as a continuous time system.

Hence, if at time t the transmit power of the signal is x2(t) =
p(t), then the instantaneous rate r(t) in bits per channel use

energy

queue

data queue

causal CSI feedback

Emax

Tx Rx

Ein

N
√

h

Fig. 1. Additive Gaussian fading channel with an energy harvesting
transmitter and causal channel state information (CSI) feedback.

is

r(t) =
1

2
log (1 + h(t)p(t)) (2)

The fading level h and energy arrivals are stochastic pro-

cesses in time that are marked by Poisson counting processes.

Hence, the fading level changes and energy arrives for a

countable number of times in any time interval. The instants

of channel gain changes and energy arrivals are indexed as

tf1 , tf2 , . . . , tfn, . . . and te1, t
e
2, . . . , t

e
n, . . ., respectively, with the

convention that te1 = tf1 = 0. The fading level in [0, tf1 ) is

h1, in [tf1 , tf2 ) is h2, and so on. Similarly, Ei units of energy

arrives at time tei , and E0 units of energy is available at time 0.

Hence {(tei , Ei)}∞i=0 and {(tfi , hi)}∞i=1 completely define the

events that take place during the course of data transmission.

A sample realization for this model is shown in Fig. 2. In the

sequel, we will refer to a change in channel fading level or

in energy level as an event and the time interval between two

events as an epoch.

Energy arrival information is available to the transmitter at

the time of its occurrence. Moreover, by virtue of the causal

feedback link, the transmitter can perfectly track the changes

in the fade level. Therefore, at time t all {Ei} and {hj} such

that tei < t and tfj < t are known perfectly by the transmitter.

The incoming energy is first buffered in the battery before it is

used in data transmission, and the transmitter is allowed to use

the battery energy only. Accordingly, we assume Ei ≤ Emax

for all i as otherwise excess energy cannot be accommodated

in the battery anyway.

A power management policy is denoted as p(t) for t ∈
[0, T ]. There are two constraints on p(t), due to energy arrivals

at random times and also due to the finite battery storage

capacity. Since energy that has not arrived yet cannot be used

at the current time, there is a causality constraint on the power

management policy as:

∫ te

i

0

p(u)du ≤
i−1
∑

j=0

Ej , ∀i (3)

where the limit of the integral tei should be interpreted as tei−ǫ,

for small enough ǫ. Moreover, due to the finite battery storage

capacity, we need to make sure that energy level in the battery
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Fig. 2. The system model and epochs under channel fading.

never exceeds Emax. Since energy arrives at certain points

in time, it is sufficient to ensure that the energy level in the

battery never exceeds Emax at the times of energy arrivals.

Let d(t) = max{tei : tei ≤ t}. Then,

d(t)
∑

j=0

Ej −
∫ t

0

p(u)du ≤ Emax, ∀t ∈ [0, T ] (4)

We emphasize that our system model is continuous rather

than slotted. In slotted models, e.g., [5], [6], [16], the energy

input-output relationship is written for an entire slot. Such

models allow energies larger than Emax to enter the battery

and be used for transmission in a given single slot. Our

continuous system model prohibits such occurrences.

In [9], we considered the setting where the energy arrival

and channel fade patterns are known by the transmitter a

priori in an offline manner. We have solved for the deadline

constrained throughput optimal policy using Lagrangian tech-

niques, and concisely characterized the optimality conditions

by an adaptive algorithm termed directional waterfilling. In the

developed algorithm, the incoming energies are poured over

the channel fade pattern from the current time to the future

subject to the battery capacity constraint. The transmit power

is determined as the water level over the fade level.

In this paper, we first obtain the online optimal transmission

policy using dynamic programming. We then develop sub-

optimal adaptive waterfilling policies that mimic the optimal

offline policy in [9]. The developed algorithms determine

the transmit power as a function of time using the causal

knowledge of the system available at the transmitter, i.e., the

instantaneous energy state and fading state.

III. OPTIMAL ONLINE POLICY

In this section, we consider the maximization of the average

number of bits sent by deadline T when causal information

of the energy arrivals and channel fade levels are available at

the transmitter as in Fig. 1. Moreover, statistics of the channel

state and energy arrival processes are known.

The states of the system are the fade level h and the battery

energy e. An online policy, g(e, h, t), denotes the transmit

power decided by the transmitter at time t when the states

are e and h. We call a policy admissible if g is nonnegative,

g(0, h, t) = 0 for all h and t ∈ [0, T ] and e(T ) = 0. Hence,

admissible policies guarantee that no transmission can occur if

battery energy is zero. In addition, energy left in the battery at

the time of deadline is zero so that resources are used fully by

the deadline T . The throughput of the policy g in the interval

[t, T ] is denoted as Jg(e, h, t).

Jg(e, h, t) = E

[

∫ T

t

1

2
log (1 + h(τ)g(e, h, τ)) dτ

]

(5)

Then, the value function is the supremum over all admissible

policies

J(e, h, t) = sup
g

Jg (6)

Therefore, the optimal online policy g∗(e, h, t) is such that

J(e, h, t = 0) = Jg∗(e, h, 0), i.e., it solves the following

max
g

E

[

∫ T

0

1

2
log (1 + h(τ)g(e, h, τ)) dτ

]

(7)

In order to solve (7), we first consider δ-skeleton of the random

processes [13]. For sufficiently small δ, we quantize the time

by δ and have the following.

max
g

E

[

∫ T

0

1

2
log (1 + h(τ)g(e, h, τ)) dτ

]

= max
g(e,h,0)

(

δ

2
log (1 + h(0)g(e, h, 0)) + J(e, h, δ)

)

(8)

Then, we can recursively solve (8) to obtain g∗(e, h, t = kδ)
for k = 1, 2, . . . , ⌊T

δ
⌋. This procedure is the dynamic pro-

gramming solution for continuous time and yields the optimal

online policy [13], [18]. After solving for g∗(e, h, t), the

transmitter records this function as a look-up table and at each

time t, it receives feedback h(t), senses the battery energy e(t)
and transmits with power g∗(e(t), h(t), t).

IV. SUBOPTIMAL ONLINE WATERFILLING POLICIES

Due to the curse of dimensionality inherent in the dynamic

programming solution, it is natural to forgo performance in

lieu of less complex online policies. In this section, we propose

several suboptimal transmission policies that can somewhat

mimic the offline optimal algorithms while being computa-

tionally simpler and requiring less statistical knowledge. In

particular, we resort to event-based online policies which react

to a change in fading level or an energy arrival. Whenever an

event is detected, the online policy decides on a new power

level. Note that the transmission is subject to the availability

of energy and the Emax constraint.

A. Constant Water Level Policy

The constant water level policy makes online decisions for

the transmit power whenever a change in the fading level

is observed through the causal feedback. Assuming that the

knowledge of the average recharge rate P is available to the

transmitter and that fading density fh is known, the policy

calculates h0 that solves the following equation.
∫

∞

h0

(

1

h0
− 1

h

)

fh(h)dh = P (9)



Whenever a change in the fading level occurs, the policy

decides on the following power level pi =
(

1
h0

− 1
hi

)+

. If

the energy in the battery is nonzero, transmission with pi is

allowed, otherwise the transmitter becomes silent.

Note that this power control policy is the same as the

capacity achieving power control policy in a stationary fading

channel [19] with an average power constraint equal to the

average recharge rate. In [4], this policy is proved to be sta-

bility optimal in the sense that all data queues with stabilizable

arrival rates can be stabilized by policies in this form where

the power budget is P − ǫ for some ǫ > 0 sufficiently small.

However, for the time constrained setting, this policy is strictly

suboptimal as will be verified in the numerical results section.

This policy requires the transmitter to know the mean value of

the energy arrival process and the full statistics of the channel

fading. A channel state information (CSI) feedback is required

from the receiver to the transmitter at the times of events only.

B. Energy Adaptive Waterfilling

Another reduced complexity event-based policy is obtained

by adapting the water level to the energy level at each event.

Again the fading statistics is assumed to be known. Whenever

an event occurs, the policy determines a new power level. In

particular, the cutoff fade level h0 is calculated at each energy

arrival time as the solution of the following equation
∫

∞

h0

(

1

h0
− 1

h

)

f(h)dh = Ecurrent (10)

where Ecurrent is the energy level at the time of the event.

Then, the transmission power level is determined similarly as

pi =
(

1
h0

− 1
hi

)+

. This policy requires transmitter to know

the fading statistics. A CSI feedback is required from the

receiver to the transmitter at the times of changes in the

channel state.

C. Time-Energy Adaptive Waterfilling

A variant of the energy adaptive waterfilling policy is

obtained by adapting the power to the energy level and the

remaining time to the deadline. The cutoff fade level h0 is

calculated at each energy arrival time as the solution of the

following equation.
∫

∞

h0

(

1

h0
− 1

h

)

f(h)dh =
Ecurrent

T − tei
(11)

Then, the transmission power level is pi =
(

1
h0

− 1
hi

)+

.

D. Hybrid Adaptive Waterfilling

This adaptive waterfilling policy combines the approaches

of constant water level and time-energy adaptive waterfilling

policies, hence the name hybrid adaptive waterfilling. The

cutoff fade level h0 is calculated at each energy arrival time

as the solution of the following equation.
∫

∞

h0

(

1

h0
− 1

h

)

f(h)dh =
Ecurrent

T − tei
+ Pavg (12)

Then, the transmission power level is determined as pi =
(

1
h0

− 1
hi

)+

whenever Ecurrent > 0. Fading statistics is

required and feedback is necessary only at the times of events.

V. NUMERICAL RESULTS

We consider a fading additive Gaussian channel with band-

width W where the instantaneous rate is

r(t) = W log (1 + h(t)p(t)) (13)

h(t) is the channel SNR, i.e., the actual channel gain divided

by the noise power spectral density multiplied by the band-

width, and p(t) is the transmit power at time t. Bandwidth is

chosen as W = 1 MHz for the simulations.

We examine the deadline constrained throughput perfor-

mances of the optimal online policy and other proposed sub-

optimal online policies. In particular, we compare the optimal

performance with the proposed sub-optimal online policies

which are based on waterfilling [19]. The proposed suboptimal

online policies use the fading distribution, and react only to

the new energy arrivals and fading level changes. These event-

based algorithms require less feedback and less computation,

however, the fact that they react only to the changes in the

fading level and new energy arrivals is a shortcoming of

these policies. Since the system is deadline constrained, the

policies need to take the remaining time into account yet the

proposed policies do not do this optimally. We simulate these

policies under various different settings and we observe that

the proposed suboptimal policies may perform very well in

some cases while not as well in some others.

We perform all simulations for 1000 randomly generated

realizations of the channel fade pattern and δ = 0.001 is taken

for the calculation of the optimal online policy. The rates of

Poisson mark processes for energy arrival and channel fading

λe and λf are assumed to be 1. The unit of λe is J/sec and that

of λf is 1/sec. Hence, the mean value of the density function

fe is also the average recharge rate and the mean value of fh

is the average fading level. The changes in the fading level

occur relatively slowly with respect to the symbol duration.

fe is set as a non-negative uniform random variable with

mean P , and as the energy arrival is assumed to be smaller

than Emax, we have 2P < Emax. Selection of the Emax

constraint is just for illustration. In real life, sensors may

have batteries of Emax on the order of kJ but the battery

feeds all circuits in the system. Here, we assume a fictitious

battery that carries energy for only communication purposes.

Hence, Emax on the order of 1 J will be considered. We

will examine different fading distributions fh. In particular,

Nakagami distribution with different shape parameter m is

considered. We implement the specified fading by sampling its

probability density function with a sufficiently large number

of points.

In order to assess the performance, we find an upper bound

on the performances of the policies by first assuming that the

channel fading levels and energy arrivals in the [0, T ] interval

are known non-causally, and that the total energy that will



arrive in [0, T ] is available at the transmitter at time t = 0.

Then, for the water level pw that is obtained by spreading

the total energy to the interval [0, T ], with the corresponding

fading levels, yield the throughput Tub defined in the following

Tub =
W

T

K
∑

i=1

li
1

2
log

(

1 + hi

(

pw − 1

hi

)+
)

(14)

as an upper bound for the average throughput in the [0, T ]
interval; here K denotes the number of epochs, li denotes the

duration of the fade level in the ith epoch.

We start with examining the average throughput of the

system under Rayleigh fading with SNR= 0 dB and deadline

T = 10 sec, Emax = 10 J as depicted in Fig. 3. We observe

that time-energy adaptive waterfilling policy performs quite

close to the optimal online policy in the low recharge rate

regime. It can be a viable policy to spread the incoming

energy when the recharge rate is low; however, its performance

saturates as the recharge rate is increased. In this case, the

incoming energy cannot be easily accommodated and more

and more energy is lost due to overflows. In Fig. 4, we plot

the simulation results for the low recharge rate regime with

the battery capacity Emax = 1 J and we observe that hybrid

adaptive policy performs better while energy adaptive policy

behaves similar to the previous case. Next, we examine the

setting with T = 10 sec, Emax = 10 J under Nakagami

fading of m = 3 (average SNR= 5 dB) and plot the per-

formances in Fig. 5. As a common behavior in these settings,

energy adaptive waterfilling performs poorer with respect to

the constant water level and time-energy adaptive waterfilling

schemes. Since energy adaptive scheme determines the power

level considering only the instantaneous energy changes, it

cannot take advantage of the battery for saving energy for

future use, and hence performs relatively poorly.

We also simulate the degenerate case where the channel

is static (h = 1). In this case, the suboptimal waterfilling

policies behave as follows: whenever a new energy arrival

occurs, the constant water level policy decides to transmit with

power Pavg, the energy adaptive waterfilling policy decides

to transmit with power equal to the battery energy, the time

energy adaptive policy decides to transmit with power equal to

battery energy divided by the time remaining to the deadline,

and finally the hybrid adaptive policy decides to transmit

with power equal to Pavg plus battery energy divided by the

time remaining to the deadline. We take T = 10 sec and

Emax = 1 J. As the performance plots in Fig. 6 show, the

time-energy adaptive waterfilling performs almost optimally

under low recharge rate regime while its performance degrades

with respect to the optimal online policy as the recharge rate is

increased. We observe that hybrid adaptive scheme performs

quite close to the optimal.

Finally, we examine the policies under different deadline

constraints and present the plots for Nakagami fading distri-

bution with m = 5 in Fig. 7. A remarkable result is that as

the deadline is increased, stability optimal [4] constant water

level policy approaches the optimal online policy. We conclude
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Fig. 4. Performances of the policies for different energy arrival rates under
unit mean Rayleigh fading, T = 10 sec and Emax = 1 J.

that the time-awareness of the optimal online policy has less

and less importance as the deadline constraint becomes looser.

We also observe that the throughput of the energy-adaptive

waterfilling policy is roughly a constant regardless of the

deadline. This is also true for the upper bound in (14) which

is expected as the average is taken over time and realizations

and the underlying processes are ergodic. Moreover, the time-

energy adaptive policy performs worse as T is increased

because energies are spread to very long intervals rendering the

transmit power very small and hence energy accumulates in

the battery. This leads to significant energy overflows since the

battery capacity is limited, and the performance degrades. The

hybrid adaptive policy performs right above the constant water

level policy and approaches to it as the deadline is increased

since the second term Ecurrent

T−te

i

becomes less significant as the

deadline is increased.
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VI. CONCLUSIONS

We developed online energy management schemes for en-

ergy harvesting systems operating in fading channels, with

finite capacity rechargeable batteries. We first determined the

throughput optimal policy for deadline constrained setting

under online knowledge of the events using stochastic dynamic

programming in continuous time. Next, we provided several

suboptimal transmission policies that somewhat mimic offline

optimal solution and require less information for processing.

Our numerical results show the performances of these algo-

rithms under online knowledge of the events.
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