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a b s t r a c t

We consider an energy harvesting transmitter sending messages to two users over parallel and fading
Gaussian broadcast channels. Energy required for communication arrives (is harvested) at the transmitter
and a finite-capacity battery stores it before being consumed for transmission. Under off-line knowledge
of energy arrival and channel fading variations, we obtain the trade-off between the performances of the
users by characterizing the maximum departure region in a given interval. We first analyze the transmis-
sion with an energy harvesting transmitter over parallel broadcast channels. We show that the optimal
total transmit power policy that achieves the boundary of the maximum departure region is the same as
the optimal policy for the non-fading broadcast channel, which does not depend on the priorities of the
users, and therefore is the same as the optimal policy for the non-fading scalar single-user channel. The
optimal total transmit power can be found by a directional water-filling algorithm. The optimal splitting
of the power among the parallel channels is performed in each epoch separately. Next, we consider fading
broadcast channels and obtain the transmission policies that achieve the boundary of the maximum
departure region. The optimal total transmit power allocation policy is found using a specific directional
water-filling algorithm for fading broadcast channels. The optimal power allocation depends on the pri-
orities of the users unlike in the case of parallel broadcast channels. Finally, we provide numerical illus-
trations of the optimal policies and maximum departure regions for both parallel and fading broadcast
channels.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

A distinct characteristic of energy harvesting communication
systems is that the energy required for communication arrives dur-
ing the session in which communication takes place. The transmit-
ter is able to harvest energy from nature in order to recharge its
battery. The energy is modeled to arrive (be harvested) at arbitrary
instants and in arbitrary amounts. Therefore, transmission
schemes must adapt to the incoming energy. In this paper, we con-
sider communication with an energy harvesting transmitter over
parallel and fading AWGN broadcast channels.

In particular, we consider an energy harvesting transmitter that
sends data to two receivers over parallel and fading broadcast
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channels as in Figs. 1 and 2. Data for the two receivers are back-
logged at the transmitter buffers while arriving energy is stored
in a finite-capacity battery. Service is provided to the data buffers
with the cost of energy depletion from the energy buffer, i.e., the
battery. Energy arrivals and channel variations are known by the
transmitter a priori. Data to be sent to the receivers are assumed
to be available at the data buffers before the transmission starts.
Although power allocation problem in traditional systems with
non-rechargeable batteries subject to average power constraints
in parallel and fading broadcast channels are solved using identical
techniques, off-line scheduling with rechargeable batteries in these
two channel models are considerably different. We first address
parallel broadcast channels. The time sequence of the power allo-
cation and the splitting to two users are simultaneously deter-
mined for each parallel channel. Next, we consider fading
broadcast channels. As the fading levels and strength order of the
users vary throughout the communication, the power allocation
is determined according to the joint fading variations of the users.
In both scenarios, the transmitter has to adapt its transmission
power with respect to the available energy and also avoid possible
energy overflows due to the finite-capacity battery.
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Fig. 1. The two-user parallel broadcast channel with an energy harvesting
transmitter.

Fig. 2. The two-user fading broadcast channel with an energy harvesting
transmitter.
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There has been recent research effort on understanding data
transmission with an energy harvesting transmitter that has a
rechargeable battery [1–7]. In [1], data transmission with energy
harvesting sensors is considered, and optimal on-line policy for
controlling admissions into the data buffer is derived using a dy-
namic programming framework. In [2], energy management poli-
cies which stabilize the data queue are proposed for single-user
communication and some delay optimality properties are derived
under a linearity assumption for the power-rate relation. In [3],
throughput optimal energy allocation is studied for energy har-
vesting systems in a time constrained slotted setting. In [4,5], min-
imization of the transmission completion time is considered in an
energy harvesting single-user system and the optimal solution is
obtained analytically and using a geometric algorithm. In [6], en-
ergy harvesting transmitters with batteries of finite energy storage
capacity are considered and the problem of throughput maximiza-
tion by a deadline is solved in a static channel. In [7], optimal off-
line and on-line transmission policies are given for a single-user
energy harvesting transmitter operating in a fading channel. In
[8,9], optimal off-line policies are developed for the static AWGN
broadcast channel with an infinite capacity battery, concurrently
and independently. References [10,11] extend the broadcasting
framework to the case of a finite-capacity battery energy harvest-
ing transmitter.

In a previous related line of research, transmission scheduling
for maximum rate or minimum energy under delay constraints
has been considered in [12–17]. In [12], optimal off-line packet
scheduling for energy minimization is solved in a delay con-
strained single-user data link and in [13], the framework is ex-
tended for multiple access, broadcast and fading data links. In
[14], the energy minimal transmission for a single-user data link
is solved using a calculus approach that incorporates various qual-
ity of service constraints. In [15], optimal energy allocation to a
fixed number of time slots is derived under time-varying channel
gains and with off-line and on-line knowledge of the channel state
at the transmitter. In [16], delay constrained capacity of fading
channels is found under causal feedback using dynamic program-
ming. In [17], capacity of a two-user fading broadcast channel is
determined under stringent delay constraints.

In this paper, we extend the line of research in the off-line opti-
mal scheduling in energy harvesting communication systems for
the parallel and fading broadcast channels. As the users utilize
the common resources, which are the harvested energy and the
wireless communication medium, there is a trade-off between
the performances of the users. We characterize this trade-off by
obtaining the maximum departure region [8,11] by a deadline T
and determine the optimal off-line policies that achieve the bound-
ary of the maximum departure region. We first investigate recently
developed results for the non-fading broadcast channel in [10,11].
Next, we consider off-line scheduling for energy harvesting trans-
mitters over parallel broadcast channels. We show that the optimal
total transmit power policy that achieves the boundary of the max-
imum departure region is the same as the optimal policy for the
non-fading scalar broadcast channel, which does not depend on
the priorities of the users, and therefore is the same as the optimal
policy for the non-fading scalar single-user channel. The optimal
policy is found by a directional water-filling algorithm which is
based on transferring energies from past to the future. The amount
of energy transfer is limited by the finite battery capacity con-
straint. The power is split to each parallel channel separately in
each epoch. We then consider off-line scheduling for energy har-
vesting transmitters over fading broadcast channels. We show that
in the optimal policy that achieves the boundary of the maximum
departure region, energy allocation in each epoch is determined by
a directional water-filling algorithm [7] that is specific to the fad-
ing broadcast channel. In particular, water level in between two
energy arrivals is calculated by using the water-filling scheme de-
scribed in [18] or the greedy power allocation in [19]. If the water
level is higher on the right, no energy is transferred; otherwise
some energy is transferred to the future. Unlike the case of parallel
broadcast channels, in the case of fading broadcast channels, the
total transmit power policies achieving different points on the
boundary of the maximum departure region depend on the prior-
ities of the users. Finally, we numerically examine the resulting
maximum departure regions for parallel and fading broadcast
channels in a deterministic setting.
2. The channel and energy models

In this paper, we consider two different channel models, namely
parallel broadcast channels and fading broadcast channels.
Although the treatment of these two channel models in traditional
systems with non-rechargeable batteries subject to average power
constraints are equivalent [18,19], the extra dimension created due
to the battery energy variations at the transmitter leads to signifi-
cant differences between these two channel models in the context
of off-line broadcast scheduling. In the following, we provide the
details of these two channel models as well as the energy model.
2.1. The parallel broadcast channel model

In a two-user parallel broadcast channel, one transmitter sends
data to two receivers over independent parallel channels. The
model is depicted in Fig. 1. We consider the case where there are
two parallel channels only. The generalization to more than two
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parallel channels is straightforward, and left out for brevity and
clarity of presentation in this paper.

The received signals at the two receivers are

Y1i ¼ Xi þ Z1i; i ¼ 1;2 ð1Þ
Y2i ¼ Xi þ Z2i; i ¼ 1;2 ð2Þ

where Xi is the signal transmitted in the ith parallel channel, and Z1i

and Z2i are Gaussian noises with variances r2
1i and r2

2i, respectively.
If r2

1i 6 r2
2i for all i, or r2

2i 6 r2
1i for all i, then the overall channel is

degraded in favor of user 1 or user 2, respectively, and hence the
problem reduces to the scheduling problem over a scalar non-
fading broadcast channel as in [8–11]. Therefore, we consider the
case r2

11 < r2
21 and r2

12 > r2
22 where the overall broadcast channel

is not degraded.
Assuming that the transmitter transmits with power P, the

achievable rate region for this two-user parallel broadcast channel
is [19,20]

R1 6
1
2

log2 1þ a1bP
r2

11

� �
þ 1

2
log2 1þ a2ð1� bÞP

ð1� a2Þð1� bÞP þ r2
12

� �
ð3Þ

R2 6
1
2

log2 1þ ð1� a2Þð1� bÞP
r2

22

� �
þ 1

2
log2 1þ ð1� a1ÞbP

a1bP þ r2
21

� �
ð4Þ

where bP is the power allocated to the first parallel channel, and
ð1� bÞP is the power allocated to the second parallel channel, a1

and a2 are the fractions of powers spent for the message transmit-
ted to user 1 in each parallel channel. Note that even though the
overall channel is not degraded, there is no constraint on the sum
rate in the expressions that define the capacity region in (3) and
(4) since individual channels are degraded. By varying
a1 2 ½0;1�; a2 2 ½0;1� and b 2 ½0;1�, we obtain a family of achievable
regions and their union is the capacity region. Any operating point
on the boundary of the capacity region is fully characterized by
solving for the power allocation policy that maximizes
l1R1 þ l2R2 for some ðl1;l2Þ. For any l1;l2, there exist P�;a�1;a�2
and b� that achieve the corresponding point on the boundary of
the capacity region [18,19].

2.2. The fading broadcast channel model

The fading broadcast channel model is depicted in Fig. 2. The re-
ceived signals at the two receivers are

Y1 ¼
ffiffiffiffiffi
h1

p
X þ Z1 ð5Þ

Y2 ¼
ffiffiffiffiffi
h2

p
X þ Z2 ð6Þ

where X is the transmit signal, Z1; Z2 are Gaussian noises with zero-
mean and variances r2

1 and r2
2, respectively, and h1; h2 are the

(squared) fading coefficients1 for receivers 1 and 2, respectively.
As in [18], we combine the effects of fading and noise power, and ob-

tain an equivalent broadcast channel by letting n1 ¼
r2

1
h1

and n2 ¼
r2

2
h2

. If

the channel fade levels are constant at h1;h2, and the transmitter
transmits with power P, the resulting broadcast channel capacity re-
gion is [20]:

R1 6
1
2

log2 1þ aP
ð1� aÞP1ðn1 > n2Þ þ n1

� �
ð7Þ

R2 6
1
2

log2 1þ ð1� aÞP
aP1ðn2 > n1Þ þ n2

� �
ð8Þ

where a is the fraction of the power spent for the message transmit-
ted to user 1, and 1ðx > yÞ is the indicator function for the event
1 We note that the model can be generalized to a broadcast channel with
conventional complex baseband fading coefficients after proper scalings that are
inconsequential for our analysis.
x > y. We call the receiver which observes smaller combined noise
power the stronger receiver and the other one the weaker receiver.
That is, receiver 1 is the stronger user if n1 < n2 and receiver 2 is the
stronger user if n2 < n1. Note that changes in the fading levels of the
channels during the communication session causes time variation
in the strength order of the receivers.

2.3. Energy and power-rate models

In two-user energy harvesting parallel and fading broadcast
channels, the transmitter has three queues as in Figs. 1 and 2:
two data queues where data packets for the two receivers are
stored, and an energy queue where the arriving (harvested) energy
is stored. The energy queue, i.e., the battery, can store at most Emax

units of energy, which is used for transmission only, i.e., energy re-
quired for processing is not considered.

We consider an off-line setting where the changes that occur in
the energy levels throughout the communication session are
known by the transmitter a priori. In the fading broadcast channel,
the changes in the fade levels are also known by the transmitter a
priori. Performance of any transmission policy with a priori knowl-
edge provides an upper bound for that of a real time system. In the
fading broadcast channel, the fading and energy levels change at
discrete time instants tf

1; t
f
2; . . . ; tf

n; . . . and te
1; t

e
2; . . . ; te

n; . . ., respec-
tively, as shown in Fig. 3. Note that a change in the fading level
means any change in the joint fading state ðh1;h2Þ. We define an
epoch as a time interval in which no energy arrival or channel fade
level change occurs as shown in Fig. 3. An epoch in the parallel
broadcast channels scenario is the time interval between two en-
ergy harvests as the channel gains do not vary. In the fading broad-
cast channel, we extend the definition of energy arrival sequence
for the time instants at which a fading change occurs. In particular,
the input energy for epoch i is denoted as Ei�1 and it is equal to the
amount of incoming energy if the epoch starts with an energy ar-
rival; if epoch i starts with a variation in the fading level without an
energy arrival, Ei�1 ¼ 0. Finally, we let ‘i denote the length of the
ith epoch.

Whenever an input signal x is transmitted with power p in an
epoch of duration ‘ in which the channel fades are constant at the
levels h1 and h2;R1‘ and R2‘ bits of data are served out from the
backlogs of receivers 1 and 2 at the transmitter, with the cost of p‘
units of energy depletion from the energy queue. Here, ðR1;R2Þ is
the rate allocation for this epoch. ðR1;R2Þ must reside in the corre-
sponding capacity region. In particular, for the parallel channels sce-
nario, ðR1;R2Þ must satisfy (3) and (4), and in the fading broadcast
channel scenario, ðR1;R2Þ must reside in the capacity region of the
two-user AWGN broadcast channel Cn1 ;n2 ðPÞ, indexed by the noise
variances n1 and n2, which vary during the communication session.
Extending this for continuous time, if at time t the transmit power is
PðtÞ and the noise variances are n1ðtÞ ¼ r2

1=h1ðtÞ and n2ðtÞ ¼
r2

2=h2ðtÞ, the instantaneous rate pairs ðR1ðtÞ;R2ðtÞÞ reside in the cor-
responding capacity region, i.e., ðR1ðtÞ;R2ðtÞÞ 2 Cn1ðtÞ;n2ðtÞðPðtÞÞ.

The transmission policy in the parallel broadcast channel is
comprised of PðtÞ, the total power, bðtÞ 2 ½0;1�, the power share
of the 1st parallel channel, and a1ðtÞ 2 ½0;1� and a2ðtÞ 2 ½0;1�, the
power shares of user 1 in the 1st and 2nd parallel channels, respec-
tively. In fading broadcast channels, transmission policy is com-
prised of the total power PðtÞ and the portion of the total
transmit power aðtÞ 2 ½0;1� that is allocated for user 1. Therefore,
in parallel and fading broadcast channels, the total energy con-
sumed by the transmitter up to time t can be expressed asR t

0 PðsÞds. Due to the finiteness of the battery capacity, at any time
t, if the unconsumed energy is greater than Emax, only Emax can be
stored in the battery and the rest of the energy is wasted due to en-
ergy overflow. This may happen only at the instants of energy
arrivals. Therefore, the total removed energy from the battery at



Fig. 3. The energy arrivals, channel variations and epochs.
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sk; ErðskÞ, including the consumed part and the wasted part, can be
expressed recursively as

Erðsþk Þ ¼ max Erðsþk�1Þ þ
Z sk

sk�1

PðsÞds;
Xk

j¼0

Ej � Emax

 !þ( )
;

k ¼ 1;2; . . . ð9Þ

where ðxÞþ ¼maxf0; xg, and sþk should be interpreted as sk þ � for
arbitrarily small � > 0. In addition, Erðs0Þ ¼ 0. We can extend the
definition of Er for the times t – sk as:

ErðtÞ ¼ ErðsþdþðtÞÞ þ
Z t

sdþðtÞ

PðsÞds ð10Þ

where dþðtÞ ¼ maxfi : si 6 tg. As the transmitter cannot utilize the
energy that has not arrived yet, the transmission policy is subject
to an energy causality constraint. The removed energy ErðtÞ cannot
exceed the total energy arrival during the communication. This con-
straint is mathematically stated as follows:

ErðtÞ 6
Xd�ðtÞ
i¼0

Ei; 8t 2 ½0; T� ð11Þ

where d�ðtÞ ¼maxfi : si < tg. As the energies arrive at discrete
times, the causality constraint reduces to inequalities that have to
be satisfied at the times of energy arrivals:

Erðsþk�1Þ þ
Z sk

sk�1

PðsÞds 6
Xk�1

i¼0

Ei; 8k ð12Þ

An illustration of the energy removal curve ErðtÞ and the causality
constraint is shown in Fig. 4. The upper curve in Fig. 4 is the total
energy arrival curve and the lower curve is obtained by subtracting
Emax from the upper curve. The causality constraint imposes ErðtÞ to
remain below the upper curve. Moreover, ErðtÞ always remains
above the lower curve due to (9) and (10). In Fig. 4, the energy in
the battery exceeds Emax at the time of the third energy arrival
and consequently, some energy is removed from the battery with-
out being utilized for data transmission. Energy removal from the
battery continues due to only the data transmission in ðs3; s4Þ inter-
val and hence the energy removal curve approaches the total energy
arrival curve indicating that the battery energy is decreasing. In
general, battery energy is non-increasing in ðsi�1; siÞ interval for all i.

As observed in Fig. 4, energy is wasted due to energy overflow if
ErðtÞ intersects the lower curve at the vertically rising parts at the
energy arrival instants. Therefore, a transmission policy guarantees
no-energy-overflow if the following constraint is satisfied:

Z t

0
PðsÞds P

XdþðtÞ
i¼0

Ei � Emax

 !þ
; 8t 2 ½0; T� ð13Þ

The constraint in (13) imposes that at least
Pk

i¼0Ei � Emax amount of
energy has been consumed (including both the data transmission
and the energy overflow) by the time the kth energy arrives so that
the battery can accommodate Ek at time sk. If a policy satisfies (13),
the max in (9) always yields the first term in it. Therefore, the cau-
sality constraint in (12) reduces to the following:

Z t

0
PðsÞds 6

Xd�ðtÞ
i¼0

Ei; 8k ð14Þ

This is shown in Fig. 5 in which the total energy curve of the policy
does not intersect the lower curve at the vertically rising parts (at
the energy arrival instants) so that no energy is wasted due to en-
ergy overflows. Hence, the causality constraint simplifies to the
condition that the total energy curve must lie below the upper
curve in Fig. 5.
3. The maximum departure region

In both parallel and fading broadcast channels, the perfor-
mances of user 1 and user 2 are strongly coupled as they are
yielded by the utilization of the common resources, which are
the harvested energy and the shared wireless communication
channel. In this section, we characterize the trade-off between
the performances of user 1 and user 2 by finding the region of bits
sent for receivers 1 and 2 in the interval ½0; T� with off-line knowl-
edge of energy and fading variations. The number of bits sent for
users 1 and 2 are:

B1 ¼
Z T

0
R1ðsÞds ð15Þ

B2 ¼
Z T

0
R2ðsÞds ð16Þ

The instantaneous rates R1ðtÞ and R2ðtÞ are determined as a function
of the instantaneous power policy PðtÞ as described in power-rate
model in Section 2.3. Next, we define the maximum departure re-
gion characterizing the bits sent for the users.



Fig. 4. The total removed energy curve ErðtÞ. The jump at s3 represents an energy overflow because of the finite-capacity battery.

Fig. 5. Energy causality constraint and no-energy-overflow constraint are depicted as cumulative energy curves and the power consumption curve of a transmission policy
that simultaneously satisfies these two constraints by lying in between these two curves.
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Definition 1. For any fixed transmission duration T, the maximum
departure region, denoted as DðTÞ, is the union of RðB1;B2Þ
¼ fðb1; b2Þ : 0 6 b1 6 B1; 0 6 b2 6 B2g where ðB1;B2Þ is the total
number of bits sent by some power allocation policy that satisfies
energy causality and no-energy-overflow conditions over the duration
½0; TÞ.

We have the following lemma, the proof of which can be carried
out following the proofs of Lemma 2 in [8] and Lemma 1 in [11]
and hence is skipped here for brevity.
Lemma 1. For both parallel and fading broadcast channels, DðTÞ is a
convex region.

We note that a transmission policy that violates the no-energy-
overflow condition is always strictly inside DðTÞ; therefore, with-
out losing optimality we restrict the feasible set to the policies that
allow no energy overflows. In the following analysis, we call any
policy that satisfies energy causality and no-energy-overflow con-
ditions feasible. We call a feasible policy optimal if it achieves the
boundary of DðTÞ.

3.1. DðTÞ for parallel broadcast channels

In parallel broadcast channels, the instantaneous rates r1ðtÞ and
r2ðtÞ allocated for users 1 and 2 are determined as a function of the
instantaneous power, PðtÞ, power share of the 1st channel, bðtÞ, and
the power shares of user 1 in the ith channel, aiðtÞ; i ¼ 1;2, via (3)
and (4). The instantaneous power, PðtÞ, is subject to the energy
causality and no-energy-overflow conditions as in (14) and (13),
respectively. We let N denote the number of energy arrivals in
the ½0; T� interval.

Due to the convexity of DðTÞ in Lemma 1 and the convex power-
rate relation, an optimal policy should remain constant in any
epoch (c.f. Lemma 1 in [8] and Lemma 2 in [4,5]). Therefore, we
consider a power policy as a sequence of powers allocated for each
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epoch fpig
Nþ1
i¼1 with the 1st channel’s share fbig

Nþ1
i¼1 , the power share

of user 1 in each channel fðai1;ai2ÞgNþ1
i¼1 . Then, the energy causality

and no-energy-overflow conditions in (14) and (13) reduce to the
following constraints, respectively, which are described by a finite
sequence of powers:

Xk

i¼1

pi‘i 6
Xk�1

i¼0

Ei; k ¼ 1; . . . ;N þ 1 ð17Þ

Xk

i¼1

pi‘i P
Xk

i¼0

Ei � Emax

 !þ
; k ¼ 1; . . . ;N ð18Þ

Here (17) is due to the energy causality constraint in (14) and (18) is
due to the no-energy-overflow condition in (13). We define the fol-
lowing functions:
r1ða1;a2;b;pÞ ¼
1
2

log2 1þa1bp
r2

11

� �
þ1

2
log2 1þ a2ð1�bÞp

ð1�a2Þð1�bÞpþr2
12

� �
ð19Þ

r2ða1;a2;b;pÞ ¼
1
2

log2 1þ ð1�a1Þbp
a1bpþr2

21

� �
þ1

2
log2 1þð1�a2Þð1�bÞp

r2
22

� �
ð20Þ
which are the rates achieved by users 1 and 2, respectively, if p is
allocated to the channels with the first parallel channel’s share bp,
and user 1’s power share ða1;a2Þ in each channel. By Lemma 1,
any point on the boundary of the maximum departure region
DðTÞ can be characterized by solving the following optimization
problem:

max
a1 ;a2 ;b;p

l1

XNþ1

i¼1

r1ða1i;a2i;bi;piÞ‘i þ l2

XNþ1

i¼1

r2ða1i;a2i; bi; piÞ‘i

s:t:
Xk

i¼1

pi‘i 6
Xk�1

i¼0

Ei; 8k

Xk

i¼1

pi‘i P
Xk

i¼0

Ei � Emax

 !þ
; 8k

0 6 aik 6 1; 0 6 bi 6 1; pk P 0; i ¼ 1;2; 8k ð21Þ

In (21), a1;a2;b;p collectively denote the vector of total powers and
power shares for the parallel channels and users. The optimization
problem (21) is not a convex problem as the variables pi;bi;a1i and
a2i appear in product forms in the expression of riða1;a2;b;pÞ, caus-
ing it to be non-concave in ai;p and b jointly. However, for any gi-
ven a1;a2;b we note that l1r1ða1;a2; b;pÞ þ l2r2ða1;a2;b; pÞ is
concave with respect to p. Using this property, we solve (21) in
two steps. We optimize over a1i;a2i;bi first and then over the total
power pi. The details of the optimal policy are presented in Section
5.

3.2. DðTÞ for fading broadcast channels

In fading broadcast channels, the instantaneous rates r1ðtÞ and
r2ðtÞ allocated for users 1 and 2 are determined as a function of
the instantaneous power, PðtÞ and the power share of user 1,
aðtÞ, via (7) and (8). The instantaneous power, PðtÞ, is subject to
the energy causality and no-energy-overflow conditions as in
(14) and (13), respectively. We let N denote the number of energy
arrivals and K denote the number of changes in the joint fading le-
vel in the ½0; T� interval. We assume that fading variations and en-
ergy arrivals occur at distinct time instants so that the number of
epochs in ½0; T� interval is N þ K þ 1. If an energy arrival and a fad-
ing variation occur at the same instant, the number of epochs is
less than N þ K þ 1.
Due to the convexity of DðTÞ in Lemma 1 and the convex power-
rate relation, an optimal policy should remain constant in any
epoch (c.f. Lemma 1 in [8] and Lemma 2 in [4,5]). Therefore, the
policy is a sequence of powers fpig

NþKþ1
i¼1 and user 1’s power share

faigNþKþ1
i¼1 . The sequence of noise variances of the equivalent broad-

cast channels is fðn1i;n2iÞgNþKþ1
i¼1 . Then, the causality and no-energy-

overflow conditions in (14) and (13) reduce to the following con-
straints, respectively, which are described by a finite sequence of
powers:

Xk

i¼1

pi‘i 6
Xk�1

i¼0

Ei; k ¼ 1; . . . ;N þ K þ 1 ð22Þ

Xk

i¼1

pi‘i P
Xk

i¼0

Ei � Emax

 !þ
; k ¼ 1; . . . ;N þ K ð23Þ

Here (22) is due to the energy causality constraint in (14) and (23) is
due to the no-energy-overflow condition in (13). We define the fol-
lowing functions:

r1ðn1;n2;a;pÞ ¼
1
2

log2 1þ ap
ð1� aÞp1ðn1 > n2Þ þ n1

� �
ð24Þ

r2ðn1;n2;a;pÞ ¼
1
2

log2 1þ ð1� aÞp
ap1ðn2 > n1Þ þ n2

� �
ð25Þ

which are the rates achieved by users 1 and 2, respectively, in the
fading broadcast channel when power is p and power share of user
1 is a. By Lemma 1, any point on the boundary of DðTÞ can be char-
acterized by solving the following optimization problem for some
l1;l2 P 0:

max
p;a

l1

XNþKþ1

i¼1

r1ðn1i;n2i;ai;piÞ‘i þ l2

XNþKþ1

i¼1

r2ðn1i;n2i;ai; piÞ‘i

s:t:
Xk

i¼1

pi‘i 6
Xk�1

i¼0

Ei; 8k

Xk

i¼1

pi‘i P
Xk

i¼0

Ei � Emax

 !þ
; 8k

0 6 ak 6 1; pk P 0; 8k ð26Þ

where p;a denote the vector of total powers and the power shares
of user 1, respectively. The optimization problem in (26) is not a
convex problem as the variables pi;ai appear in a product form in
the expression of riðn1;n2;a; pÞ, causing it to be non-concave in ai

and pi jointly. However, l1r1ðn1; n2;a;pÞ þ l2r2ðn1;n2;a;pÞ is con-
cave with respect to p for any given a. We will solve (26) using this
property. The details of the optimal policy for the fading broadcast
channel is presented in Section 6.

For ease of exposition, we first consider the optimal policy in
the non-fading broadcast channel in the next section.
4. Optimal policy for non-fading broadcast channel

In this section, we review the results presented in [10] for the
non-fading broadcast channel. The results were presented from a
rate perspective in [10]. Here, we present them alternatively from
a power perspective. We set the fading coefficients as h1 ¼ 1 and
h2 ¼ 1 and in addition, we assume without loss of generality that
r2

1 ¼ 1 and r2
2 ¼ r2 > 1 so that user 1 is the stronger user and user

2 is the weaker user. The main step is to view the maximization
problem in (21) and (26) for the scalar non-fading broadcast chan-
nel as a sequence of single-variable maximization problems over
the variable ai given pi as follows:
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max
ai

l1

2
log2 1þ aipið Þ þ l2

2
log2 1þ ð1� aiÞpi

aipi þ r2

� �
s:t: 0 6 ai 6 1 ð27Þ

For any given pi, this optimization problem has a unique solution for
ai. Let us define a function a�ðpÞ : Rþ ! ½0;1� which denotes the
solution of the problem in (27) for pi ¼ p. We obtain a�ðpÞ as fol-
lows: let us further denote l ¼ l1

l2
. If l 6 1 then a�ðpÞ ¼ 1 for all p.

If l P r2, then a�ðpÞ ¼ 0 for all p. For 1 < l < r2, we have

a�ðpÞ ¼
1; 0 6 p 6 r2�l

l�1

1
p

r2�l
l�1 ; p P r2�l

l�1

8<
: ð28Þ

Let us define the following function:

f ðpÞ , l1

2
log2 1þ a�ðpÞpð Þ þ l2

2
log2 1þ ð1� a�ðpÞÞp

a�ðpÞpþ r2

� �
ð29Þ
Lemma 2. ([11]) f ðpÞ is monotone increasing and strictly concave
function of p.

Then, the optimization problem in (21) for the scalar non-fading
case can be rewritten as an optimization problem only in terms of
pi as follows:

max
p

XNþ1

i¼1

f ðpiÞ‘i

s:t:
Xk

i¼1

pi‘i 6
Xk�1

i¼0

Ei; 8k

Xk

i¼1

pi‘i P
Xk

i¼0

Ei � Emax

 !þ
; 8k

pk P 0; 8k ð30Þ

The optimization problem in (30) is a convex optimization problem.
The objective function is strictly concave by Lemma 2 and the fea-
sible set is a convex set. We write the Lagrangian function as:

L ¼
XNþ1

i¼1

f ðpiÞ‘i �
XNþ1

k¼1

kk

Xk

i¼1

pi‘i �
Xk�1

i¼0

Ei

 !

�
XN

k¼1

gk

Xk

i¼0

Ei � Emax

 !þ
�
Xk

i¼1

pi‘i

 !
ð31Þ

Using the KKT optimality and complementary slackness conditions
on L, it can be shown [11] that the unique optimal total transmit
power allocation is the same for all ðl1;l2Þ. This unique optimal to-
tal transmit power allocation can be found by the directional water-
filling algorithm introduced in [7]. Alternatively, this unique opti-
mal total power allocation can be found by using the feasible energy
tunnel approach proposed in [6]. Note that the structures of the two
alternative algorithms in [6,7], as well as the ones in [4,5] for the
unconstrained battery case, are determined by the strict concavity
of the rate-power relation. We obtained the same structure in the
broadcast channel because of the strict concavity of f ðpÞ due to
Lemma 2.

After finding the optimal total power allocation p�i ; i ¼ 1;
. . . ;N þ 1, we can find the solution of the original problem in
(26) by finding the optimal a�i ; i ¼ 1; . . . ;N þ 1, via a�i ¼ a�ðpiÞ
using (28). We first note that due to the degradedness of the sec-
ond user, when l2

l1
6 1, the total power pi is allocated to the first

user only and no bits are transmitted for the second user. When
1 < l2

l1
, we define the cut-off power level as
Pc ¼
r2 � l
l� 1

� �þ
ð32Þ

where l ¼ l2
l1

. A point on the boundary of DðTÞ, which is equally rep-
resented by l, is achieved by the following policy: for 1 < l, if in an
epoch the total transmit power level is below Pc in (32), then, only
the stronger user’s data is transmitted; otherwise, both users’ data
are transmitted and the stronger user’s power share is Pc . For l 6 1,
only the stronger user’s data is transmitted. Therefore, the optimal
policies that achieve the boundary of DðTÞ have a common total
power sequence and its splitting between the two users depends
on l1;l2 through l ¼ l2

l1
. For different values of l, the optimal pol-

icy achieves different boundary points on the maximum departure
region. Varying the value of l traces the boundary of DðTÞ.

5. Optimal policy for parallel broadcast channels

The optimization problem in (21) can be cast as a sequence of
optimization problems of the following form given the power p:

max
a1 ;a2 ;b

l1r1ða1;a2; b;pÞ þ l2r2ða1;a2; b;pÞ

s:t: 0 6 a1;a2;b 6 1
ð33Þ

Note that given b and p, optimal a1 and a2 can be separately calcu-
lated. In particular, (33) is solved at a1 ¼ a�1ðb;pÞ and a2 ¼ a�2ðb;pÞ. If
l2
l1
6 1; a�1ðb;pÞ ¼ 1 while if l2

l1
P r2

21
r2

11
; a�1ðb;pÞ ¼ 0 for all b. On the

other hand, if 1 < l2
l1
<

r2
21

r2
11

, we have

a�1ðb;pÞ ¼
1; 0 6 bp 6

l2r2
11�l1r2

21
l1�l2

1
bp

l2r2
11�l1r2

21
l1�l2

; bp P l2r2
11�l1r2

21
l1�l2

8<
: ð34Þ

Similarly, if l1
l2
6 1; a�2ðb; pÞ ¼ 0 while if l1

l2
P r2

12
r2

22
then a�2ðb;pÞ ¼ 1 for

all b. If 1 < l1
l2
<

r2
12

r2
22

,

a�2ðb;pÞ ¼
0; 0 6 ð1� bÞp 6 l1r2

22�l2r2
12

l2�l1

1� 1
ð1�bÞp

l1r2
22�l2r2

12
l2�l1

; ð1� bÞp P l1r2
22�l2r2

12
l2�l1

8<
:

ð35Þ

Hence, (33) is equivalent to the following given p:

max
06b61

l1r�1ðb;pÞ þ l2r�2ðb;pÞ ð36Þ

where r�1ðb;pÞ ¼ r1ða�1ðb;pÞ;a�2ðb; pÞ;b;pÞ and r�2ðb; pÞ ¼ r2ða�1ðb;pÞ;
a�2ðb;pÞ; b;pÞ. Note that in view of Lemma 2, the objective function
in (36) is strictly concave with respect to the two power levels
p1 ¼ bp and p2 ¼ ð1� bÞp allocated to the two parallel channels.
This, in turn, implies that the objective function in (36) is strictly
concave with respect to b. The solution of (36) has a water-filling
interpretation. Working on the optimal a1 and a2 in (34) and (35),
one can show that

b�p ¼ max
u2f1;2g

luk� r2
u1

� �þ ð37Þ

ð1� b�Þp ¼ max
u2f1;2g

luk� r2
u2

� �þ ð38Þ

where k is the water level and b� is the optimizer of (36). The water
level k is found by a greedy power allocation algorithm [18,19].
Power is incrementally allocated to the parallel channel that yields
the maximum increase in the objective function in (36): for small
power values, only a single parallel channel is allocated power. As
the power is further increased, both parallel channels are allocated
power. In the extreme cases, only single users are allocated power
and the power is split over the parallel channels by single-user

water-filling: If l2
l1
6

r2
22

r2
12

, then all the power is allocated to user 1;
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if l2
l1

P r2
21

r2
11

, then all the power is allocated for user 2. The outcome of

the optimization problem depends on the power p. Let us define

gðpÞ ¼ max
06b61

l1r�1ðb;pÞ þ l2r�2ðb;pÞ ð39Þ

We have the following lemma whose proof is provided in Appendix
A:

Lemma 3. gðpÞ is monotone increasing, strictly concave function of p.

Then, the optimization problem in (21) is equivalently stated as
an optimization problem only in terms of pi as follows:

max
p

XNþ1

i¼1

gðpiÞ‘i

s:t:
Xk

i¼1

pi‘i 6
Xk�1

i¼0

Ei; 8k

Xk

i¼1

pi‘i P
Xk

i¼0

Ei � Emax

 !þ
; 8k

pk P 0; 8k ð40Þ

The optimization problem in (40) is a convex optimization problem.
The objective function is strictly concave by Lemma 3 and the fea-
sible set is a convex set.

Following the steps for finding the optimal policy in non-fading
scalar broadcast channels, and as the objective function in (40) is
concave, we obtain an important characteristic of optimal policies
that achieve the boundary of DðTÞ of parallel broadcast channels.

Lemma 4. For any point on the boundary of DðTÞ of parallel
broadcast channels, the optimal total transmit power allocation
sequence is the same as the optimal single-user power allocation
policy in the scalar case.

With Lemma 4 and the preceding findings, we obtain the full
structure of a point on the boundary of the maximum departure re-
gion DðTÞ. We first calculate the total power allocated for each re-
ceiver using the tightest curve approach in [4,5] if Emax ¼ 1, or the
feasible tunnel approach in [6] or the directional water-filling algo-
rithm in [7] if Emax is finite. As a result, we get the sequence of total
powers allocated at each time epoch, fp�i g

Nþ1
i¼1 . Then, we divide each

p�i as p�i1 ¼ b�i p and p�i2 ¼ ð1� b�i Þp allocated to the two parallel
broadcast channels by means of the water-filling solution de-
scribed in (37) and (38). With this, we get the power shares for
each parallel channel p�i1 and p�i2 as well as the corresponding
power shares of user 1 in each parallel channel a�1ðp�i1Þ and
a�2ðp�i2Þ. Then, ðB�1;B

�
2Þ point that corresponds to the priority coeffi-

cients l1 and l2 is

B�1 ¼
XNþ1

i¼1

1
2

log 1þ a�1ðp�i1Þp�i1
r2

11

� �
‘i

þ 1
2

log 1þ a�2ðp�i2Þp�i2
ð1� a�2ðp�i2ÞÞp�i2 þ r2

12

� �
‘i ð41Þ

B�2 ¼
XNþ1

i¼1

1
2

log 1þ ð1� a�2ðp�i2ÞÞp�i2
r2

22

� �
‘i

þ 1
2

log 1þ ð1� a�1ðp�i1ÞÞp�i1
a�1ðp�i1Þp�i1 þ r2

21

� �
‘i ð42Þ
6. The optimal policy for fading broadcast channels

We now consider the fading broadcast channel. In order to solve
(26), we first optimize the cost function in the ith epoch over ai for
a given total transmit power pi. Consider the single-variable opti-
mization problem in a for a given p:

max
06a61

l1r1ðn1;n2;a;pÞ þ l2r2ðn1;n2;a;pÞ ð43Þ

The optimal solution of (43) is denoted by a ¼ a�ðn1;n2;pÞ. Assume
n1 < n2 and let l ¼ l2=l1. If 1 < l < n2

n1
;a�ðn1;n2;pÞ is expressed as:

a�ðn1;n2; pÞ ¼
1; 0 6 p 6 ln1�n2

1�l
1
p

ln1�n2
1�l ; p P ln1�n2

1�l

(
ð44Þ

In the extreme cases, a�ðn1;n2;pÞ ¼ 1 if l 6 1 and a�ðn1; n2;pÞ ¼ 0 if
l P n2

n1
. If the order of noises is the other way, i.e., if n2 < n1, by

changing the definition of l as l ¼ l1
l2

,

a�ðn1;n2; pÞ ¼
0; 0 6 p 6 ln2�n1

1�l

1� 1
p

ln1�n2
1�l ; p P ln2�n1

1�l

(
ð45Þ

We define

hðn1;n2;pÞ , l1r1ðn1;n2;a�;pÞ þ l2r2ðn1;n2;a�;pÞ

We have the following due to Lemma 2.

Lemma 5. hðn1;n2; pÞ is monotone increasing, strictly concave
function of p given n1 and n2.
In particular, hðn1; n2; pÞ has a continuous monotone decreasing
first derivative: for n1 < n2, whenever a�ðn1;n2; pÞ ¼ 1, the deriva-
tive is l1

pþn1
and otherwise, it is l2

pþn2
. Similarly, if n2 < n1, whenever

a�ðn1;n2; pÞ ¼ 0, the derivative is l2
pþn2

and otherwise, it is l1
pþn1

.

Hence, by first optimizing over ai in (26), we obtain the following
convex optimization problem over the total power sequence fpig:

max
p

XNþKþ1

i¼1

hðn1i;n2i;piÞ‘i

s:t:
Xk

i¼1

pi‘i 6
Xk�1

i¼0

Ei; 8k

Xk

i¼1

pi‘i P
Xk

i¼0

Ei � Emax

 !þ
; 8k

pk P 0; 8k ð46Þ

The optimization problem in (46), and hence the one in (26), has a
unique optimal solution.

We define the Lagrangian for the problem in (46) as,

L ¼
XNþKþ1

i¼1

hðn1i;n2i;piÞ‘i �
XNþKþ1

j¼1

kj

Xj

i¼1

pi‘i �
Xj�1

i¼0

Ei

 !

�
XNþKþ1

j¼1

jj

Xj

i¼0

Ei � Emax

 !þ
�
Xj

i¼1

pi‘i

 !
þ
XNþKþ1

i¼1

gipi ð47Þ

The first order condition on the Lagrangian is

d
dpi

hðn1i;n2i;piÞ ¼
XNþKþ1

j¼i

kj �
XNþKþ1

j¼i

jj � gi ð48Þ

The complimentary slackness conditions are:

kj

Xj

i¼1

pi‘i �
Xj�1

i¼0

Ei

 !
¼ 0; 8j ð49Þ

jj

Xj

i¼0

Ei � Emax

 !þ
�
Xj

i¼1

pi‘i

 !
¼ 0; 8j ð50Þ

gjpj ¼ 0; 8j ð51Þ
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It follows that the optimal total power in epoch i is given by

p�i ¼ lui
mi �

1
lui

hui

" #þ
ð52Þ

where the water level in epoch i; mi, is

mi ¼
1PNþKþ1

j¼i kj �
PNþKþ1

j¼i jj

ð53Þ

The index ui is uniquely determined by the given l1;l2; n1;n2 and
Ei. In particular, ui is 1 if the derivative of hðn1;n2;pÞ at the allocated
power p�i in (52) is l1

pþn1
and it is 2 otherwise. For l2

l1
6

minifn1i
n2i
; n2i

n1i
g; ui ¼ 1 for all i and all the power is allocated to the first

user only. If l2
l1

P maxifn1i
n2i
; n2i

n1i
g; ui ¼ 2 for all i and all the power is

allocated to the second user. For the remaining values of l2
l1

, both
users may be allocated power in some epoch.

Note that the slackness variables ki and ji are zero in between
two energy harvesting instants as the energy causality and no-en-
ergy-overflow constraints are never violated except possibly at the
energy arriving instants. Therefore, the water level mi is the same
for all epochs in between two energy harvesting instants. When
Emax ¼ 1, for any epoch i, the optimum water level mi is monoton-
ically increasing, i.e., miþ1 P mi as jj ¼ 0 in this case. If some energy
is transferred from epoch i to iþ 1, then mi ¼ miþ1.

For finite Emax case, the solution is found by a directional
water-filling algorithm [7], which we describe next. The direc-
tional water-filling algorithm requires walls at the points of en-
ergy arrival, with right permeable water taps in each wall
Fig. 6. Directional wate
which allows at most Emax amount of water to flow, as shown
in Fig. 6. First, the taps are kept off and transfer from one epoch
to the other is not allowed. Each incoming energy Ei is spread in
the time interval till the next energy arrival time and the water
level is calculated. The main difficulty arises due to the fact that
the index ui is not known a priori. If a sequence of ui is assumed,
the resulting water levels and power allocation should be com-
patible with (45) and there exists a unique u�i sequence that is
compatible with (45). The resulting water levels mi can be found
by the water-filling algorithm in [18] or the greedy water-filling
algorithm in [19]. The water levels when each right permeable
tap is turned on will be found allowing at most Emax � Ei amount
of energy transfer from the past epochs to the epochs which start
with arrival of Ei provided that the initial water level in epoch
i� 1 is higher than that in epoch i. This is due to the fact that
the slackness variable ji is not active if energy transfer from past
to the future is less than Emax � Ei. If ji is not active, water level mi

in the past should be less than or equal to the water level mj in
the future. As ki ¼ 0 if an energy arrival does not occur at epoch
i, we conclude that the incoming energy should be spread till the
time next energy arrives. Optimal power allocation p�i is then cal-
culated by plugging the resulting water levels into (52). We note
that the water level is scaled by different priority coefficients lui

to yield the energy consumed at each epoch. Individual power
shares are then found via (45). The optimal solution is unique un-
less n1i ¼ n2i for some epoch i. If n1i ¼ n2i for some epoch i, the
optimal policy when l1 ¼ l2 is any policy formed by time-shar-
ing between giving strict priority to one of the users at that
r-filling algorithm.



Fig. 7. Energy arrivals occur at ½2;5;8;9;12� s with amounts ½3;6;9;8;9�mJ and the initial energy in the battery at time zero E0 ¼ 8 mJ. The optimal total power sequence for
T ¼ 10 s, T ¼ 12 s, T ¼ 14 s and T ¼ 16 s.
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epoch. In this case, the sum throughput optimal points of DðTÞ
form a line.

An example run of the algorithm is shown in Fig. 6, for a case of
12 epochs. Five energy arrivals occur during the communication
session, in addition to the energy available at time t ¼ 0. We ob-
serve that the water level equalizes in epochs 1, 2, 3, 4, 5. No power
is transmitted in epoch 7, since 1

lui
hui

is too high. The energy arriving
at the beginning of epoch 6 cannot flow left due to energy causality
constraints, which are ensured by right permeable taps. We ob-
serve that the excess energy in epochs 6, 7 and 8 cannot flow right,
due to the Emax constraint at the beginning of epoch 9.

We remark here that the optimal policy strongly depends on the
priority coefficients l1;l2 of the users in contrast to the non-fading
and parallel broadcast channels in which the optimal total power
sequence is independent of l1 and l2. In particular, the bottom le-
vel of the directional water-filling is determined by the particular
values of l1 and l2. If the user priorities are identical, i.e.,
l1 ¼ l2, then the optimal policy is equal to the single-user trans-
mission policy for the user with the best channel at each epoch.
The power allocation is found by applying the directional water-
filling algorithm in [7] by selecting the bottom level in Fig. 6 as

1
maxfh1i ;h2ig

.

We finally remark that our analysis can be extended for the case
in which the transmitter sends messages over parallel broadcast
channels with time-varying channel gains. For given channel gains,
the share variables a1;a2 and b are defined as in (19) and (20) and
after optimizing the weighted sum of rates over the share variables
as in (43) we obtain a strictly concave function of power due to
Lemma 5. Using similar convex optimization tools, we conclude
that the solution is unique and it is found by a generalized direc-
tional water-filling algorithm.

7. Numerical illustrations

In this section, we provide numerical illustrations for the max-
imum departure region over parallel and fading broadcast chan-
nels. We start with parallel channels and then consider fading
broadcast channels.



Fig. 8. The maximum departure region for the parallel broadcast channel under the
given energy arrivals for various T.
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7.1. Parallel broadcast channels

We consider a band-limited two-user AWGN broadcast channel
with two parallel channels operating with a bandwidth of W ¼ 1 MHz
and under noise power spectral density N0 ¼ 10�19 W/Hz. In the
first channel, the path loss between the transmitter and receiver
1 is c11 ¼ 100 dB and between the transmitter and receiver 2 is
c21 ¼ 105 dB. We have

r11 ¼Wlog2 1þ a1c11bP10�3

N0W

 !

¼ log2 1þ a1bP
n11

� �
Mbps ð54Þ

and

r21 ¼Wlog2 1þ ð1� a1Þc21bP10�3

a1c21bP10�3 þ N0W

 !

¼ log2 1þ ð1� a1ÞbP
a1bP þ n21

� �
Mbps ð55Þ

where n11 ¼ 1 and n21 ¼ 100:5. The second parallel channel has path
loss coefficients c12 ¼ 107 dB and c22 ¼ 103 dB and the resulting
rate expressions are
Fig. 9. The energy and fading profiles
r12 ¼ log2 1þ a2ð1� bÞP
ð1� a2Þð1� bÞP þ n12

� �
Mbps ð56Þ

r22 ¼ log2 1þ ð1� a2Þð1� bÞP
n22

� �
Mbps ð57Þ

where n12 ¼ 100:7 and n22 ¼ 100:3.
We assume that the battery capacity is Emax ¼ 10 mJ and the en-

ergy arrivals occur at time instants te
1 ¼ 2 s, te

2 ¼ 5 s, te
3 ¼ 8 s,

te
4 ¼ 9 s, te

5 ¼ 12 s with amounts E1 ¼ 3 mJ, E2 ¼ 6 mJ, E3 ¼ 9 mJ,
E4 ¼ 8 mJ, E5 ¼ 9 mJ. The battery energy at time t ¼ 0 s is
E0 ¼ 8 mJ. We show the optimal total transmit power sequences
for T ¼ 10 s, T ¼ 12 s, T ¼ 14 s and T ¼ 16 s in Fig. 7. Initial energy
in the battery and the first two energy arrivals are spread till
t ¼ 8 s. However, at most 2 mJ energy can flow from the time inter-
val [8,9] s to the future as the finite battery constrains the energy
flow. For example, for T ¼ 10 s, only 0.5 mJ energy is transferred
from [8,9] s interval while for T ¼ 12 s, 2 mJ limit is hit and the
power in [8,9] s is kept at 7 mJ (which leads to 7 mW power in that
interval). Similarly, at most 1 mJ energy can flow from [9,12] s
interval to the future. This leads to a non-monotonic total transmit
power sequence as opposed to the Emax ¼ 1 case. We plot the
resulting maximum departure regions in Fig. 8. Note that the max-
imum departure regions are strictly convex for all T and monotone
in T. We observe that the gap between the regions for different T
for the fading broadcast channel.

Fig. 10. The maximum departure region for the fading broadcast channel under the
given energy arrival and fading profiles at T ¼ 14 s.



Fig. 11. The sum throughput optimal policy obtained by directional water-filling.
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increases in the passage from T ¼ 12 s to T ¼ 14 s since an energy
arrival occurs at t ¼ 12 s. This is reminiscent of the fact that in a
single-user energy harvesting system, the rate of increase of the
maximum departure curve is infinite at energy harvesting instants
as observed in [7].

7.2. Fading broadcast channels

We consider a band-limited AWGN broadcast channel with
bandwidth W ¼ 1 MHz and noise power spectral density
N0 ¼ 10�19 W/Hz. The path loss between the transmitter and recei-
ver 1 is c1 ¼ 100 dB and between the transmitter and receiver 2, is
c2 ¼ 105 dB. In addition, the channel fading coefficients h1 and h2

vary during the transmission. We have

r1 ¼Wlog2 1þ ac1h1P10�3

ð1� aÞc1h1P10�31ðc1h1 < c2h2Þ þ N0W

 !
ð58Þ

¼ log2 1þ aP
ð1� aÞP1ðc1h1 < c2h2Þ þ n1

� �
Mbps ð59Þ

and similarly

r2 ¼ log2 1þ ð1� aÞP
aP1ðc1h1 > c2h2Þ þ n2

� �
Mbps ð60Þ

where n1 ¼ 1
h1

and n2 ¼ 100:5

h2
. The fading profile, hi ¼ ðh1i;h2iÞ where i

is the time index and both entries are in dB, is h1 ¼ ð7;4Þ; h2 ¼
ð7; 2Þ; h3 ¼ ð2; 2Þ; h4 ¼ ð�1; 3Þ; h5 ¼ ð�1; 8Þ; h6 ¼ ð1; 13Þ; h7 ¼
ð1; 8Þ; h8 ¼ ð3; 8Þ and h9 ¼ ð5; 7Þ at time instants tf

1 ¼ 0 s, tf
2 ¼ 1 s,

tf
3 ¼ 3 s, tf

4 ¼ 4 s, tf
5 ¼ 7 s, tf

6 ¼ 8 s, tf
7 ¼ 10 s, tf

8 ¼ 11 s. We show the
energy and fading profiles in Fig. 9. In particular, the fading profiles
in Fig. 9 are the inverted overall channel gains of the users, i.e., the
path loss times fading coefficients.

We plot the maximum departure region corresponding to the
given energy and channel profiles for T ¼ 14 s in Fig. 10. There
are four critical points of the maximum departure region, A, B, C
and D, as indicated in Fig. 10. At point A, all the power is allocated
for the transmission of user 1 and no data is transmitted for user 2;
point D is vice versa. At points B and C, the priorities of the users
are equal, i.e., l ¼ l2

l1
¼ 1. For the points to the left of B, l P 1

and for the points to the right of C, l 6 1. The total power alloca-
tion at points A and D are found by single-user directional water-
filling in [7] with the bottom level selected as 1

c1h1i
and 1

c2h2i
, respec-

tively. Moreover, the total power allocation at the sum throughput
optimal policies (points B and C) is found by single-user directional
water-filling with the bottom level selected as 1
maxfc1h1i ;c2h2ig

. In
Fig. 11, we show the total power allocation of the sum throughput
optimal policies corresponding to the time-sharing between points
B and C in Fig. 10. Note that the total power allocation is not af-
fected by the choice of the index ui at epochs i in which
c1h1i ¼ c2h2i. As c1h1i ¼ c2h2i holds for some i, time sharing between
these users in these epochs does not violate optimality for l ¼ 1.
Therefore, the boundary of the maximum departure region in-
cludes a line segment with a slope of �45�. We remark that if
h1i – h2i for all i, the boundary of the maximum departure region
does not include a line segment, i.e., it is strictly convex. In an ergo-
dic setting with continuous fading distributions, under some mild
conditions, the probability that c1h1i ¼ c2h2i for some i is zero and
therefore the ergodic capacity region is strictly convex [18].

8. Conclusions

In this paper, we considered communication over parallel and
fading broadcast channels with an energy harvesting rechargeable
transmitter that has a finite-capacity battery. We characterized the
region of bit departures by a deadline T in an off-line setting where
changes in the energy and fading levels are known a priori at the
transmitter. For parallel broadcast channels, we showed that the
optimal total power allocation sequence is the same as that for
the non-fading broadcast channel, which does not depend on the
priorities of the users and equals the single-user optimal power
allocation policy. The total power is split for the parallel channels
in each interval separately. For fading broadcast channels, in
contrast with non-fading broadcast channels, we showed that the
optimal power allocation policy strongly depends on the priorities
of the users and it is found by a specific directional water-
filling algorithm. Finally, we provided illustrations for the
maximum departure region for both parallel and fading broadcast
channels.

Appendix A. Proof of Lemma 3

Continuity of gðpÞ follows from the continuity of g1 and g2. In
order to prove that gðpÞ is strictly concave, we need to show the
following

gðkp1 þ ð1� kÞp2Þ > kgðp1Þ þ ð1� kÞgðp2Þ ð61Þ

for all 0 < k < 1.
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We define the following functions for each parallel channel:

g1ðpÞ , max
06a61

l1

2
log2 1þ ap

r2
11

� �
þ l2

2
log2 1þ ð1� aÞp

apþ r2
21

� �
ð62Þ

g2ðpÞ , max
06a61

l1

2
log2 1þ ap

ð1� aÞpþ r2
12

� �

þl2

2
log2 1þ ð1� aÞp

r2
22

� �
ð63Þ

We first note that both g1ðpÞ and g2ðpÞ are continuous, strictly con-
cave functions of p due to Lemma 2 in [11].

gðpÞ in Lemma 3 can be expressed in terms of g1ðpÞ and g2ðpÞ as
follows:

gðpÞ ¼ max
06b61

g1ðbpÞ þ g2ðð1� bÞpÞ ð64Þ

Therefore, for any 0 6 b 6 1, we have

gðpÞP g1ðbpÞ þ g2ðð1� bÞpÞ ð65Þ

We now prove the strict concavity. Let p1 and p2 be given. Let b1 be
the solution of (64) when p ¼ p1 and b2 be the solution when p ¼ p2.
Then,

gðp1Þ ¼ g1ðb1p1Þ þ g2ðð1� b1Þp1Þ ð66Þ
gðp2Þ ¼ g1ðb2p2Þ þ g2ðð1� b2Þp2Þ ð67Þ

For any 0 < k < 1, we have

gðkp1þð1�kÞp2Þ
P g1ðkb1p1þð1�kÞb2p2Þþg2ðkð1�b1Þp1þð1�kÞð1�b2Þp2Þ ð68Þ
> kg1ðb1p1Þþð1�kÞg1ðb2p2Þþkg2ðð1�b1Þp1Þþð1�kÞg2ðð1�b2Þp2Þ ð69Þ
¼ kgðp1Þþð1�kÞgðp2Þ ð70Þ

The inequality in (68) is by evaluating (65) for p ¼ kp1 þ ð1� kÞp2

and b ¼ kb1p1þð1�kÞb2p2
kp1þð1�kÞp2

. (69) is due to the concavity of g1ðpÞ and

g2ðpÞ and (70) is a rearrangement of (69). This proves the strict con-
cavity of gðpÞ.
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