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Abstract—In this paper, we consider a collaborative sensing
scenario where sensing nodes are powered by energy harvested
from environment. We assume that in each time slot, the utility
generated by sensing nodes is a function of the number of the
active sensing nodes in that slot. Under the energy causality con-
straint at every sensor, our objective is to develop a collaborative
sensing scheduling for the sensors such that the time average
utility is maximized. We consider an offline setting, where the
energy harvesting profile over duration [0, T−1] for each sensor is
known beforehand. Under the assumption that the utility function
is concave over Z+, we first propose an algorithm to identify the
number of active sensors in each slot. The obtained scheduling
structure has a “majorization” property. We then propose a
procedure to construct a collaborative sensing policy with the
identified structure. The obtained sensing scheduling is proved
to be optimal.

I. INTRODUCTION

Sensor networks equipped with energy harvesting devices
have attracted great attentions recently. Compared with con-
ventional sensor networks powered by batteries, the energy
harvesting abilities of the sensor nodes make sustainable and
environment-friendly sensor networks possible. Such renew-
able energy supply feature also necessitates a completely
different approach to energy management.

Under an energy harvesting setting, energy management
schemes have been developed to optimize communication
related metrics, such as channel capacity, transmission delay
or network throughput [1]–[8], and signal processing related
performance metrics, such as estimation mean square error,
detection delay, false alarm probability [9], [10].

In this paper, we focus on the design of a collaborative
sensing scheme in a sensor network powered by energy
harvested from the environment. Our motivation is a collab-
orative sensing scenario where multiple sensors are deployed
to monitor the spectrum usage in an area. While collaborative
sensing schemes have been well studied under a conventional
battery-powered setting, the optimal sensing scheduling for
rechargeable sensing nodes has not been studied before. Our
objective is to coordinate the sensing actions among multiple
sensor nodes in a way that the time average sensing perfor-
mance (such as the probability of detection error) is optimized.
Our primary constraint is the energy causality constraint at
each sensor node.

Specifically, we assume that a sensor takes a unit of energy
to sense the nature and send its observation to a fusion center

(FC). Sensors cannot perform the sensing task when there
is not sufficient energy in its battery. The FC combines the
observations collected from sensors and infer the underlying
spectrum usage status. We assume that the inference perfor-
mance is measured in terms of the utility generated by the
observations. The utility generated in each slot is a function of
the set of active sensors in that slot. Our objective is to select a
subset of sensors to perform the sensing task in each time slot,
such that the long-term average utility is optimized, while the
energy constraint at each individual sensor is satisfied at every
time slot. The problem has a combinatorial nature and is hard
to solve in general. The randomness of the energy harvesting
processes at sensors make the problem even more challenging.

To make the problem tractable, we assume that the utility
function is symmetric with respect to sensors, i.e., it is a
function of the total number of active sensors in each slot.
In addition, we assume that it is a concave function defined
over Z+. Under such assumptions, we show that the optimal
sensing scheduling has a “majorization” structure, i.e., the
number of active sensors in each slot should be as even
as possible, subject to the energy causality constraints at
individual sensors. We propose an algorithm to identify the
optimal number of active sensors in each slot, and construct a
sensing scheduling with the identified subset sizes.

We point out that a similar “majorization” scheduling struc-
ture has been observed in throughput optimization problems
with energy harvesting transmitters [1], [4], [6]. In [1], the
optimal transmission policy for a single transmitter under the
given energy causality constraint is to equalize the transmit
power as much as possible. The “majorization” structure of
the solution is due to the concavity of the function r =
1
2 log(1 + P ). However, there are fundamental differences
between problem studied in this paper and [1]. The optimiza-
tion problem in this paper is to select a subset of sensors
in each slot, and each selected sensor consumes a unit of
energy for sensing, while in [1], the objective is to vary the
power to maximize the throughput. The latter is formulated
as a convex optimization problem, while the former has a
combinatorial nature, and in general cannot be solved through
convex optimization.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this paper, we consider a sensor network consisting of N
sensors (randomly) distributed in an area. Each sensor node is
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powered by energy harvested from ambient environment. We
assume that each sensor node has an energy queue to store the
harvested energy. The energy queue has a maximum storage
capacity Emax. For now, we consider the case where Emax =
+∞. The energy queue at each sensor is replenished randomly
and consumed by taking observations and transmitting them to
a fusion center (FC). We assume that a unit amount of energy
is required for one sense-and-transmit operation.

We consider a time-slotted system. In time slot t, a subset
of sensors, denoted as Ct, is selected to sense the environment,
and transmit their observations to the FC. We assume a sensor
can make at most one observation in each slot. The FC then
combines the observations for inference. The utility generated
by those observations is a function of Ct, denoted as f(Ct).
The total sensing utility over duration [1, T ] is simply the sum
of the utilities generated in each slot in [1, T ]. We make the
following assumptions on the utility function f(Ct).

Assumptions 1
(0) f(C) is a function of the size of C, i.e., f(C) = f(|C|).
(i) f(∅) = f(0) = 0.

(ii) f(m) is monotonically increasing in m.
(iii) f(m+ 1) + f(m− 1) < 2f(m) for m ∈ Z+.

Assumption 1-(0) implies that f(C) is symmetric with respect
to sensor nodes. By imposing this assumption, we essentially
ignore the differences in contributions from different sensing
nodes, and focus on the impact of the total number of collected
observations on the sensing performance. Assumption 1-(i)(ii)
are natural assumptions, as Assumption 1-(i) indicates that no
utility can be gained if no observation has been made, and
Assumption 1-(ii) means that the utility function increases as
more observations are collected. Assumption 1-(iii) essentially
means that f(m) is a concave function defined over Z+.

Let Ei(t) denote the amount of energy remaining in the
battery of node i at the beginning of time slot t, Ai(t) be the
amount of harvested energy at node i during slot t. Without
loss of generality, we assume Ai(t) ∈ Z+. Then, the energy
queue evolves according to

Ei(t+ 1) = Ei(t)− 1i∈Ct +Ai(t), (1)

where 1x is an indicator function, i.e., it equals one if x is true,
and it equals zero otherwise. Since an observation cannot be
made if E(t) < 1, we impose the following energy constraints

Ei(t) ≥ 1i∈Ct , ∀t, i. (2)

We consider an offline setting, i.e., Ai(t), t = 0, 1, . . . , T−1
are known beforehand. Our objective is to select the subset
of sensors Ct to perform the sensing task in each time slot
t, such that the time average utility generated over [1, T ] is
maximized. Such scheduling must satisfy the energy constraint
for each individual sensor at every time slot. Thus, the
optimization problem is formulated as

max
{Ct}

1

T

T∑
t=1

f(Ct) s.t. (1)− (2) (3)

III. THE OPTIMAL SENSING SCHEDULING

The optimization problem in (3) has a combinatorial nature,
and is in general hard to solve. However, with Assumption
1, we show that the optimal solution has a “majorization”
structure, which can be exploited to obtain the optimal sensing
scheduling explicitly. In this section, we first describe a
procedure to determine the structure of the optimal scheduling,
and then construct a scheduling policy explicitly with the
obtained structure.

A. Identify a Majorization Scheduling Structure

First, we note the energy harvesting profile {Ai(t)}t for
sensor i imposes constraints on the total number of time slots
that a sensor be active over [1, t],∀t. Let Bi(t) =

∑t−1
j=0Ai(j)

be the total amount of energy harvested upto the beginning of
time slot t. Then, the total number of time slots that a sensor
can be active over [1, t] is upper bounded by Bi(t). However,
we note that since at most one unit of energy can be spent in
each slot, a sensor may not be able to spend all of the Bi(t)
units of energy over [1, t]. To provide a tight bound on the total
number of times slots that an sensor can be active up to t, we
introduce another quantity Si(t), which is defined recursively
as follows

Si(0) = 0, ∀i (4)
Si(t) = min{Si(t− 1) + 1, Bi(t)}, ∀i, t (5)

Based on this definition, we have
t∑

j=1

1i∈Ct ≤ Si(t), ∀i (6)

Sum up the inequalities in (6) over i, we get
N∑
i=1

t∑
j=1

1i∈Ct ≤
N∑
i=1

Si(t) := S(t)

which is equivalent to
t∑

j=1

|Ct| ≤ S(t), ∀t (7)

Eqn. (7) imposes a constraint on the accumulative number of
observations the FC can collect up to time slot t. Due to the
concavity of the utility function f(Ct) in |Ct|, intuitively, to
maximize the objective function in (3), we should equalize
{|Ct|}t as much as possible, under the constraints in (6) for
each individual sensor. While handling N individual con-
straints simultaneously is too complicated, in the following, we
equalize {|Ct|}t under the sum constraint (7) only. In general,
the solution obtained with such relaxation may not be feasible
when individual constraints are imposed. However, as we will
show in Sec. III-B, the {|Ct|}t obtained under constraint (7)
is always feasible.

The procedure to equalize {|Ct|}t under the constraints in
(7) is provided in Algorithm 1. Starting with n = 0, eqn. (8)
calculates the average number of active nodes in each slot
over [1, t] assuming constraint (7) is tight at t, and pick the
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minimum as the tentative size of Ct for 1 ≤ t ≤ t1. Repeating
this procedure until tn = T , we obtain a sequence of tentative
sizes for {Ct}t. The way we obtain the sequence implies that
this is the most equalized scheduling structure under constraint
(7), with equality met at time T .

However, the tentative size of Ct given by Algorithm 1
may not be an integer, which cannot be achieved since we
cannot let a non-integer number of nodes be active in a slot.
In order to obtain a valid scheduling, we adjust the tentative
size according to (10). By rounding the tentative size down
and up in this way, we keep the total number of observations
collected over [tn−1 + 1, tn] the same, and get rid of the
potential problem caused by the non-integer number of active
nodes. Intuitively, this is the most equalized valid scheduling
structure we can have.

Algorithm 1 An algorithm to equalize {|Ct|}Tt=1

1: Input: {S(t)}Tt=1.
2: Initialization: n = 0, t0 = 0.
3: while tn < T do
4: n = n+ 1;
5: Let

tn = arg min
tn−1<t≤T

{
S(t)− S(tn−1)

t− tn−1

}
(8)

r = S(tn)−S(tn−1)−(tn−tn−1)

⌊
S(tn)−S(tn−1)

tn − tn−1

⌋
(9)

ct =


⌊
S(tn)−S(tn−1)

tn−tn−1

⌋
, tn−1 < t ≤ tn−r⌈

S(tn)−S(tn−1)
tn−tn−1

⌉
, tn − r < t ≤ tn

(10)

6: end while
7: Output: {ct}Tt=1.

B. Construct a Sensing Scheduling with {ct}Tt=1

With the scheduling structure, i.e., {ct}Tt=1, obtained in
Algorithm 1, we aim to construct a sensing policy, such that
the active number of nodes in slot t equals ct exactly, and
each individual energy constraint in (6) is satisfied.

We propose to construct the sensing scheduling in the
following way. First, we obtain an initial scheduling by letting
each sensor perform sensing in a greedy fashion. Specifically,
we let each sensor node spend one unit of energy to take an
observation whenever it has sufficient energy. By designing
the sensing policy in this way, sensor i senses in time slot
t whenever Si(t) − Si(t − 1) = 1. Thus, we have exact
S(t) − S(t − 1) active sensor nodes in slot t. Let S(t) be
the set of active nodes in slot t, and |S(t)| := st. Initially,
S(t) includes all sensors with at least one unit of energy at
the beginning of slot t under the greedy sensing policy.

Then, we adjust the initial scheduling by letting a subset
of sensors postpone their sensing actions scheduled in certain
time slots and sense with the saved energy in some later time

slots. The rescheduling is coordinated in a way that exact ct
sensors are scheduled for sensing in time t.

The rescheduling is carried out progressively. Starting with
t = 1, we search for the first t such that st < ct, denoted as t̂,
and the first t such that st > ct, denoted as t̄. As we will see
in Lemma 3, t̄ < t̂. We then remove a subset of sensors from
S(t̄), and add them to S(t̂), i.e., we let them be silent in time
slot t̄ and be active in t̂. Since t̄ < t̂, this does not violate the
individual energy causality constraints in (6).

Recall that we assume each sensor can take at most one
observation in each slot. Let δ = min(st̄ − ct̄, ct̂ − st̂). We
then randomly remove δ sensors from S(t̄)\S(t̂) and add them
to S(t̂). If δ 6= ct̂ − st̂, we search for the next t̄ with st̄ > ct̄
and repeat the procedure. Once st̂ becomes equal to ct̂, we
search for the next t̂ with st̂ < ct̂, repeat the procedure, until
t = T .

In order to prove the feasibility of the described reschedul-
ing procedure, we introduce the following Lemmas. The first
two Lemmas can be easily proved based on Algorithm 1.

Lemma 1
∑t
j=1 cj ≤ S(t) for 1 ≤ t ≤ T . The equality holds

if t ∈ {tn}n.

Lemma 2 If tn−1 < t1 < t2 ≤ tn, we must have either
ct1 = ct2 , or ct1 = ct2 − 1.

Lemma 3 In each iteration of the rescheduling, if
∑t̂
t=1 st =

S(t̂), we must have a) t̄ < t̂, b)
∑τ
t=1 st = S(τ), ∀τ > t̂.

Proof: Part a) can be proved through contradiction. If t̄ >
t̂, based on the definition of t̄ and t̂, we have

∑t̂
t=1 st =∑t̂−1

t=1 ct + st <
∑t̂
t=1 ct ≤ S(t̂) where the last inequality

follows from Lemma 1. It contradicts with the assumption of
the Lemma. Thus, we must have t̄ < t̂.

Part b) can be proved based on the observation that the
rescheduling only involves {S(t)}t̂t=1, and the scheduling in
slot τ, τ > t̂ keeps unchanged. �
Moreover, after the rescheduling in each iteration, with the
updated subsets S(t̄) and S(t̂), we still have st ≥ ct for t < t̂.
Therefore, the next time slot t with st < ct can only be greater
than or equal to the current t̂. Hence the assumption of Lemma
3 is still satisfied for the next iteration. Using induction, in
each iteration of the rescheduling, a) and b) are always true.

Theorem 1 The rescheduling procedure always finishes with
a valid sensing policy with scheduling structure {ct}Tt=1.

Proof: The proof of the feasibility of the rescheduling proce-
dure includes three parts: First, we prove that in each iteration,
we must have tn−1 < t̄ < t̂ ≤ tn for some n. Second,
with given t̄ and t̂, we can always find δ active sensors from
S(t̄)\S(t̂). Third, we prove that for any given tn−1 < t̂ ≤ tn,
we can always find ct̂ − st̂ active nodes from time slots over
[tn−1 + 1, t̂− 1].

The first part can then be proved through contradiction.
According to Lemma 3, we always have t̄ < t̂. Assume
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t̄ ≤ tn−1 < t̂ ≤ tn for some n. Since st̄ > ct̄, we must have∑t̄
j=1 sj >

∑t̄
j=1 cj . Therefore,

∑tn−1

j=1 sj >
∑tn−1

j=1 cj =
S(tn−1), where the last equality follows from Lemma 1. This
implies that the energy causality constraint (7) is violated at
tn−1, which contradicts with the fact the energy causality
constraint is always satisfied in each iteration. Thus, we must
have tn−1 < t̄ < t̂ ≤ tn.

To prove the second part, we note since st̄ > ct̄, st̂ < ct̂,
and tn−1 < t̄ < t̂ ≤ tn, applying Lemma 2, we have st̄ > st̂.
Therefore,

|S(t̄)\S(t̂)| ≥ st̄ − st̂ ≥ ct̂ − st̂ (11)

which ensures that we can always select δ active sensors from
S(t̄)\S(t̂).

To prove the last part, we let δt = st− ct. Then, δt ≥ 0 for
1 ≤ t < t̂, δt̂ < 0, and

t̂∑
t=1

δt =

t̂∑
t=1

(st − ct) = S(t̂)−
t̂∑
t=1

ct ≥ 0 (12)

where the equality follows from Lemma 3, and the inequality
follows from Lemma 1. Therefore, we can always remove −δt̂
nodes from {S(t), t < t̂} to S(t̂), until we bring st̂ to ct̂.

�

Theorem 2 The obtained sensing scheduling with the struc-
ture {ct}Tt=1 determined by Algorithm 1 is optimal.

IV. A NUMERICAL EXAMPLE

In this section, we use an numerical example to illustrate
our scheduling algorithm under an offline setting. We consider
a sensor network with 5 sensor nodes. The amount of energy
harvested at each sensor node in slot t − 1, t ∈ [1, 10] is
provided in the following table.

t 1 2 3 4 5 6 7 8 9 10
Node 1 4 2 1
Node 2 5 2
Node 3 1 3 7
Node 4 1 5 2
Node 5 7
ct 2 2 3 3 4 3 4 4 4 4

TABLE I: The energy harvesting profile for sensors over
duration [1, 10]. The last line represents the number of active
sensors in each slot obtained by Algorithm 1.

We then illustrate the procedure to obtain a feasible schedul-
ing with the given scheduling structure {ct}10

t=1. The initial
greedy scheduling is illustrated in Fig. 1(a), where we use a
dot and a circle to represent the active and idle status of a
node in a given time slot, respectively.

We then perform the rescheduling according to the proce-
dure described in Sec. III-B, and obtain the final scheduling in
Fig. 1(b). We note that a subset of sensor nodes change their
status from busy to idle in certain time slots, and the saved
energy is used in a time slot later. The final scheduling has
exact ct active sensors in slot t.

Node 1

Node 2

Node 3

Node 4

Node 5

t 1 2 3 4 5 6 7 8 9 10

(a)

Node 1

Node 2

Node 3

Node 4

Node 5

t 1 2 3 4 5 6 7 8 9 10

(b)
Fig. 1: Filled circles represent active sensors in each time slot
under the initial scheduling and final scheduling in Fig. 1(a)
and Fig. 1(b), respectively. Arrows connecting a blue circle
and a red filled circle in Fig. 1(b) indicates the scheduling
adjustments upon the initialization.
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