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Abstract—In this paper, we study the level set estimation of
a spatial-temporally correlated random field by using a small

number of spatially distributed sensors. The level sets of a
random field are defined as regions where data values exceed
a certain threshold. We propose a new active sparse sensing and
inference scheme, which can accurately extract level sets in a
large random field with a small number of sensors strategically
and sparsely placed in the random field. In the proposed active
sparse sensing scheme, a central controller dynamically selects a
small number of sensing locations according to the information
revealed from past measurements, with the objective to minimize
the expected level set estimation errors. The expected estimation
error is explicitly expressed as a function of the sensing locations,
and the results are used to formulate optimal and sub-optimal
selection of sensing locations. Simulation results demonstrate that
the proposed algorithms can achieve significant performance
gains over baseline passive sensing algorithms that do not
proactively select the sensing locations.

I. INTRODUCTION

Level set estimation is the process of using observations

of a function x defined on a Hilbert space X to estimate the

region(s) in X where the function value exceeds some critical

value γ; i.e. S := {s ∈ X : x(s) ≥ γ}. Level set estimation is

of paramount importance in many large-scale sensing appli-

cations, such as the detection of spectrum holes for cogntive

radio networks [1], the accurate monitoring and tracking of

traffic congestion [2] or air/water/noise pollution [3].

In these and many other applications, identifying level sets

is the primary task, while estimating the value of the function

(i.e. the power in spectrum sensing) is often secondary, if not

irrelevant. Consequently, level set estimation can be equiva-

lently considered as a mapping problem that draws the level

contour or boundary in a random field. Intuitively, data that

are further away from the boundary are usually quite distinct

from the level of interests, thus there is less ambiguity in

terms of level set identification in those regions. Therefore,

it is desirable to collect more data samples or place more

sensors at the locations where the boundary is likely to lie.

This paper describes a new dynamic sparse sensing and

inference scheme for rapid and accurate extraction of level

sets of a spatial-temporally correlated random field. In the

system under consideration, a data fusion center (FC) performs

level set estimation by using current and past noisy data

observations from a small number of sensor nodes sparsely

distributed in the random field. One of the main novelties

of the proposed scheme is that it can dynamically adjust the

sensing locations through active learning and adaptation of

level set boundaries by analyzing past sensing data. Therefore,
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the proposed scheme can achieve accurate estimation of the

level sets with only a small number of sensors strategically

placed at critical locations of the random field. While many

methods have been devised for level set estimation in a static

setting [4]–[8], the temporally evolving nature of the random

field requires a dynamic level set estimation, which makes the

estimation problem different and challenging.

We introduce a Gaussian process (GP) prior model to cap-

ture the spatial-temporal correlations inherent in the random

field [9]. In order to efficiently exploit previous measurements

and use it to guide the active sensing process, we propose a

two-step active sensing scheme. The first step is to obtain an

initial estimation of the random field based on historical data

samples, and the second step is to actively probe the field to

refine the initial estimation. The expected estimation error is

explicitly characterized as a function of the sensing locations,

and the results are used to formulate the optimal sensing

location selection problem as a combinatorial problem. A low

complexity greedy algorithm is then proposed by developing

lower bounds of the expected estimation error.

The problem formulation and methodology developed in

this paper can benefit many large-scale sensing applications

with “big data”. It can also be applied to perform “information

distillation”, the process that extracts useful data from an ocean

of data that have already been collected.

II. SYSTEM MODEL

We consider a sensing system with multiple sensor nodes

placed over a measurement field X ⊂ R
2. Define the three-

dimensional space-time coordinate vector as c = [s, t]T ∈
X ×R+, where s = [s1, s2]

T is the space coordinate, and t is

the time variable. Sensor nodes measure a spatial-temporally

dependent physical quantity, x(c), such as the temperature or

power level of wireless signals, etc. The prior distribution of

{x(c)} is a zero-mean Gaussian process with covariance

k(ci, cj) = ks(‖si − sj‖) · kt(|ti − tj |), (1)

where ks(·), kt(·) are defined as the spatial and temporal

covariance, respectively. The ℓ2-norm ‖si − sj‖ measures the

Euclidean distance between the two coordinates si, sj ∈ X .

The sensing samples observed at the FC can be modeled as

the sum of the ground truth x(c), and a noise term z(c), i.e.,

y(c) = x(c) + z(c).

where z(c) is a zero-mean Gaussian random variable with

variance σ2, and it captures the distortions introduced during

the sensing and transmission stages.

At time t, we are interested in identifying the γ-level set of

{x(s, t)}, which is defined as S(t) := {s ∈ X : x(s, t) > γ}.
Without loss of generality, we assume γ > 0.
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We partition the measurement field X with equal-sized grid,

and the time axis into discrete time slots. It is assumed that

the grid edge length and time slot duration are small enough

such that the signal remains approximately unchanged within

one grid and in one slot. Index the coordinates of the grid as

1, 2, . . . , n, . . . , L, and let si be the coordinate for the i-th grid

point. Then, X can be slightly modified as X := {si : i =
1, . . . , L}. The error metric at slot tn is

e(S̄, tn) :=
1

L

∑

i

I
{

si ∈ ∆(Sn, S̄)
}

(2)

where Sn is the level set at slot tn, S̄ is the estimated level

set, ∆(Sn, S̄) = (Sn ∩ S̄c)∪ (Scn ∩ S̄) denotes the symmetric

difference, and Scn is the complement of Sn, and I{E} = 1 if

event E is true and 0 otherwise.

During each slot, sensing samples are collected from a

number of locations. Let C1, C2, . . . be the sets of spatial coor-

dinates the FC has collected a sample from at time t1, t2, . . ..
Denote xn and yn be the true and observed data samples at

Cn, respectively. Define xn := {xi}
n
i=1, yn := {yi}

n
i=1, and

Cn = {Ci}ni=1. Then, at each time slot tn, the dynamic level set

estimation problem is to obtain an estimate of Sn such that the

expected estimation error E[e(S̄n, tn)|Cn,yn] is minimized.

III. OPTIMAL LEVEL SET ESTIMATION IN GP

In this section we present the optimal level set estimation

algorithm given yn and Cn. The optimal algorithm will be used

to facilitate the development of the dynamic sensing algorithm

in the next section.

Define cin := [si, tn], xcin
:= x(si, tn), K(cin, Cn) :=

E

[

xcin
(xn)

T
]

and K(Cn, Cn) := E

[

xn (xn)
T
]

. The GP

regression based level set estimation algorithm is given in

Algorithm 1.

Algorithm 1 GP regression based level set estimation

1: Input: Cn,yn at tn.

2: Run GP regression for cin = [si, tn], ∀si ∈ X :

m̄(cin) := K(cin, C
n)[K(Cn, Cn) + σ2I|Cn|]

−1yn

3: Threshold m̄(cin):

S̄n = {si ∈ X : m̄(cin) > γ}

4: Output S̄n.

Theorem 1 The GP regression based level set estimation

minimizes the expected estimation error with given (Cn,yn),
i.e., E[e(S̄, tn)|Cn,yn].

Corollary 1 The expected error given by Algorithm 1 with

given (Cn,yn) is

E[e(S̄, tn)|C
n,yn] =

1

L

∑

i

Q

(

|γ − m̄(cin)|
√

k̄(cin, cin)

)

(3)

where Q(x) is the Gaussian-Q function, m̄(cin) and

k̄(cin, cin) are the posteriori mean and variance of xcin
given

(Cn,yn)

m̄(cin) = K(cin, C
n)[K(Cn, Cn) + σ2I|Cn|]

−1yn (4)

k̄(cin, cin) = k(cin, cin)−K(cin, C
n)[K(Cn, Cn) + σ2I|Cn|]

−1

·K(Cn, cin) (5)

and I|Cn| is an identity matrix of size |Cn|.

The proofs are omitted here for brevity.

The optimality of Algorithm 1 is conditioned upon the fact

that Cn and yn is given. We will discuss how to actively select

Cn based on sensing history (Cn−1,yn−1) in the next section.

IV. ACTIVE SENSING FOR LEVEL SET ESTIMATION

Optimal and sub-optimal active sensing algorithms are pre-

sented in this section. With the information extracted from

sensing history (Cn−1,yt−1), at the beginning of time slot

tn, the FC is able to obtain updated information regarding

the current function value x, which is different from its prior

distribution N (0,K). With such information, the FC is able

to adaptively select a subset of location Cn to sense, with the

goal to minimize the expected level set estimation error. Based

on this intuition, we propose a two-step active sensing scheme,

as described in Algorithm 2.

Algorithm 2 Two-step active sensing scheme

1: Input: Cn−1,yn−1 at the beginning of tn.

2: STEP 1: Update the distribution of x.

3: STEP 2: Decide Cn: actively select N locations si ∈ X
for sensing.

4: Obtain measurements yn from Cn.

5: Run Algorithm 1 with Cn, yn.

6: Output S̄n.

The first step is to obtain an initial estimate of the dis-

tribution of x, i.e., mean m̂, and covariance K̂, based on

the sensing history up to to tn−1, i.e., (Cn−1,yt−1). The

observation history up to time slot tn−1 thus provides a rough

sketch of the level set. Then, the second step is to sample the

sensing field X in tn, i.e., to select a subset of locations to

make observations, and refine the level set estimate based on

Algorithm 1 once samples are collected from Cn. Details of

the two steps are provided in the following subsections.

A. Optimal Active Sensing Location Selection

The major difficulty of the active sensing scheme lies

in the step of selecting Cn. Assuming the sensing cost is

proportional to the number of sensing actions performed by the

sensor nodes, the optimization problem with a sensing budget

constraint can be formulated as

minimizeCn
Eyn

{

E[e(S̄, tn)|C
n,yn]

}

s.t. |Cn| ≤ N (6)

where E[e(S̄, tn)|Cn,yn] is given in (3). The reason that we

take another layer of expectation with respect to yn in the

objective function is due to the fact that yn is unknown before

the selection of Cn.
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We first decompose the estimation error in (3) as a function

of (Cn,yn) and (Cn−1,yn−1). Denote

m̂(cin) = K(cin, C
n−1)[K(Cn−1, Cn−1) + σ2I|Cn−1|]

−1

· yn−1 (7)

k̂(cin, cjn) = k(cin, cjn)−K(cin, C
n−1)][K(Cn−1, Cn−1)

+ σ2I|Cn−1|]
−1K(Cn−1, cjn) (8)

which are the posterior mean and covariance of x(cin) and

x(cjn) given (Cn−1,yn−1). Besides, let

h(cin, Cn) := K̂(cin, Cn)[K̂(Cn, Cn) + σ2I|Cn|]
−1

· [yn − m̂(Cn)]

σ2
h(cin, Cn) := K̂(cin, Cn)[K̂(Cn, Cn) + σ2I|Cn|]

−1

· K̂(Cn, cin)

where the elements of the posterior mean vector m̂(Cn) =
E(xn|C

n−1,yn−1) is defined in (7), and K̂(cin, Cn) =
E
{

[xcin
− m̂(cin)][xn − m̂(Cn)]T |Cn−1,yn−1

}

and

K̂(Cn, Cn) = E
{

[xn − m̂(Cn)][xn − m̂(Cn)]T |Cn−1,yn−1
}

are the posterior covariance vector and matrix with elements

k̂(cin, cjn) defined in (8).

Then, we can decompose m̄(cin) and k̄(cin, cin) defined

in (4) and (5) in the following form.

m̄(cin) = m̂(cin) + h(cin, Cn) (9)

k̄(cin, cin) = k̂(cin, cin)− σ2
h(cin, Cn) (10)

With those notations, the optimization problem in (6) is

equivalent to

min.Cn

1

L

∑

i

Eh(cin,Cn)



Q





|m̂(cin) + h(cin, Cn)− γ|
√

k̂(cin, cin)− σ2
h(cin, Cn)









s.t. |Cn| ≤ N,

h(cin, Cn) ∼ N (0, σ2
h(cin, Cn)) (11)

This is a combinatorial optimization problem, and it is NP-

hard in general. In the following section, we propose greedy

algorithms to approximately solve the problem.

B. Lower Bound Based Greedy Algorithms

In order to simplify the notation, we define

γi : =
|m̂(cin)− γ|
√

k̂(cin, cin)
, σi :=

σh(cin, Cn)
√

k̂(cin, cin)
(12)

Theorem 2 The expected error with fixed sensing location

selection Cn in (11) is lower bounded by

Eh(cin,Cn)



Q





|m̂(cin) + h(cin, Cn)− γ|
√

k̂(cin, cin)− σ2
h(cin, Cn)







 ≥ (13)

min

{

1

π
exp

{

−
γ2
i

2

}

, Q(γi)

}

· τi (14)

for every τi ∈ [0, 1], where τi =
√

1− σ2
i .

The lower bound (13) is a linear function in τi and is easy to

evaluate. Therefore, we propose to minimize the lower bound

instead. Define

αi = min

{

1

π
exp

{

−
γ2
i

2

}

, Q(γi)

}

(15)

Then, the optimization problem (11) is modified as

min .Cn

1

L

∑

i

αi

√

1−
σ2
h(cin, Cn)

k̂(cin, cin)

s.t. |Cn| ≤ N (16)

In (16), αi and k̂(cin, cin) are independent of the choice of

Cn. Only σ2
h(cin, Cn) depends on Cn. The optimization prob-

lem (16) is still an NP-hard problem. We propose Algorithm 3

to solve it in a greedy fashion.

Algorithm 3 A greedy algorithm

1: Input: Cn−1, yn−1, Cn = ∅, F = X .

2: Update the distribution of x, obtain m̂, K̂.

3: Assign K̂ to K̄.

4: Calculate γi, αi, for i = 1, · · · , L.

5: for k = 1, 2, . . . , N do

6: Calculate σ2
h(cin, sj) =

k̄(cin,cjn)2

k̄(cjn,cjn)+σ2
for sj ∈ F

7:

l = argmin
j

1

L

∑

i

αi

√

k̄(cin, cin)− σ2
h(cin, sj)

√

k̂(cin, cin)

(17)

8: Cn ← Cn ∪ l, F ← F\l.
9: Update K̄: for i, j = 1, 2, . . . , L,

k̄(cin, cjn)← k̄(cin, cjn)−
k̄(cin, cln)k̄(cln, cjn)

k̄(cln, cln) + σ2

10: end for

11: Output Cn.

At the beginning of each time slot, the system obtains

an initial estimate of x, characterized as (m̂, K̂). Intuitively,

if the initially estimated mean m̂(cin) deviates significantly

from the threshold γ, even with a large variance k̂(cin, cin),
the probability of incorrectly classifying si in slot tn is

very small, and bringing in another sample from si will not

help much; on the other hand, if m̂(cin) is quite close to

the threshold γ, sensing around si potentially can make the

classification much more accurate. Therefore, minimizing the

level set estimation error is not equivalent to minimizing the

total posterior variance. Essentially, to estimate the level set

is to search for the boundary of the level sets. For sensing

locations far away from the boundary, their actual values do

not have much impact on the level set estimation, thus more

sensing resources should be allocated for locations around the

boundary. Such an approach has the potential to significantly

reduce the number of required sensing samples because the

area of boundary is usually only a very small percentage of

the total area, thus achieving sparse sampling.

The objective function in (16) coincides with our intuition.

The weight αi is a function of γi, which is defined in (12). We

note that in its definition, the numerator |m̂(cin)−γ| measures
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Fig. 1. Red circles represent 40 sensing locations selected by the sensing
algorithms. The ground truth are represented as red solid dots in the high
level sets and blue circles in the low level sets.

the deviation of m̂(cin) from the threshold γ, which is then

normalized by

√

k̂(cin, cin), the estimated standard deviation.

The larger the value of γi, the less likely an classification error

will happen at si. This is reflected by αi, since it is decreasing

in γi. With a small weight αi, the term αiτi plays a less

important role in the optimization (16). The solution to (16)

thus automatically allocates more resources to the locations

with heavy weights αis.

V. SIMULATION RESULTS

We consider a sensor network in a 2-D squared area with

d×d grids. The covariance functions is selected as k(ci, cj) =

ρ
‖si−sj‖
s · ρ

|ti−tj |
t , where ρs and ρt ∈ [0, 1] are the spatial and

temporal correlation coefficients, respectively. The signal to

sensing noise ratio is 30 dB, and the level set threshold is

γ = 0.1.

To illustrate the sensing decision of the proposed algorithm,

we first consider a special scenario, where ρt = 1 and N = 1.

This may correspond to a temporally slow-varying sensing

field and the time interval between any two consecutive sens-

ing actions is small and thus negligible. We set ρs = 0.96. The

level set is estimated based on the first 40 locations selected

by Algorithm 3 in Fig. 1. Most of the sensing locations of

the greedy algorithm are around the boundary. As a result, the

greedy algorithm gets an accurate estimation of the boundary.

This matches with our optimization objective, as the accurate

identification of the boundary plays a critical role for level set

estimation. In this example, the average level set estimation

error from the greedy algorithm is 0.0422, yet that from

a baseline passive sensing scheme that randomly selects N
samples in each slot is 0.0701.

To reduce the estimation complexity, we propose a sliding

window scheme, which only keeps samples collected in the

most recent T time slots for the regression in Algorithm 1.

The average level set estimation error as a function of T is

plotted in Fig. 2. In the simulation, we set ρt = 0.9, ρs = 0.9,

d = 13 and fix the total number of samples collected in each
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Fig. 2. Performance versus window size T
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Fig. 3. Performance versus sensing set size N .

slot as N = 15. The level set estimation error is normalized

by scaling it with 1/Q(γ), as it is the maximum error given

by Algorithm 1 for any sensing scheme. The normalized level

set estimation error decreases as T increases, and the proposed

greedy algorithm significantly outperforms the passive sensing

algorithm. For both algorithms, the level set estimation error

do not decrease significantly when T ≥ 6.

Fig. 3 demonstrates the effects of the number of selected

sensing locations N on the performance of level set estimation.

We set ρt = 0.9, ρs = 0.9, and fix the window size T to

be 5. For the level set estimation error, the greedy algorithm

is strictly better than the passive sensing algorithm. The

performance gap between the active sensing schemes and the

passive sensing remains almost a constant (around 0.05).

VI. CONCLUSIONS

We proposed a dynamic sparse sensing scheme for level set

estimation in spatial-temporally correlated random field. The

sparse sensing scheme can dynamically adjust the selection of

sensing locations based on past sensing results, thus achieving

the rapid and accurate extraction of level sets in a large random

field with a small number of sensing samples. A greedy

algorithm was proposed to achieve dynamic sparse sensing,

and it achieved significant performance gains over passive

sensing algorithms that do not proactively select the sensing

locations.
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