
Optimal Sampling of Random Processes under
Stochastic Energy Constraints

Jing Yang and Jingxian Wu
Department of Electrical Engineering,

University of Arkansas, Fayeteville, AR, 72701, U.S.A.

Abstract—In this paper, we study the optimal sampling policy
for an energy harvesting sensing system, which is designed
to estimate a wide-sense stationary random process by using
discrete-time samples collected by a sensor. The energy in the
sensor is consumed by taking observations and is replenished
randomly with energy harvested from the ambient environment.
Our goal is to identify the optimal sampling policy that minimizes
the estimation mean squared error (MSE) under stochastic
energy constraints. The problem can be formulated as a stochastic
programming problem, which is generally difficult to solve.

We identify an asymptotically optimal solution to the problem
by exploiting the properties of random processes with power-law
decaying covariance. Specifically, with the help of a newly derived
inverse covariance matrix of the random process, it is discovered
that the linear minimum MSE (MMSE) estimation of the random
process demonstrates a Markovian property. That is, the optimal
estimation of any point in a time segment bounded by two
consecutive samples can be achieved by using the knowledge of
only the two bounding samples while ignoring all other samples.
Such a Markovian property enables us to identify a lower bound
of the long term average MSE. Motivated by the structure of the
MSE lower bound, we then propose a simple best-effort sampling
scheme by considering the stochastic energy constraints. It is
shown that the best-effort sampling scheme is asymptotically
optimal in the sense that, for almost every energy harvesting
sample path, it achieves the MSE lower bound as time becomes
large.

I. INTRODUCTION

Sensor networks equipped with energy harvesting devices
have attracted great attentions recently. Compared with con-
ventional sensor networks powered by batteries, the energy
harvesting abilities of the sensor nodes make sustainable and
environment-friendly sensor networks possible. The unique
features of energy harvesting power supplies necessitate a
completely different approach to the energy management in
the communication or sensing systems.

One of the main challenges faced by the design of energy
harvesting communication or sensing systems is the stochastic
energy constraints imposed by the energy harvesting process.
The amount of energy available in the system at a given
time can be modeled as a random process due to the random
energy arrivals. Many existing works on the design of energy
harvesting communications employ an off-line deterministic
optimization approach, which schedules data transmissions
based on the knowledge of future energy arrivals [1]–[4]. The
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off-line scheduling methods treat future energy arrivals as a
deterministic process even though the actual energy harvesting
process is stochastic. Online scheduling methods address this
problem by using only the statistics of energy arrivals and
causal information available at the sensor. In [5], [6], sub-
optimum on-line scheduling methods are proposed, and their
performances are strictly worse than their off-line counterparts.

In this paper, we consider the optimal design of an energy
harvesting sensing system under stochastic energy constraints.
The system monitors a time evolving physical quantity, such
as temperature, humidity, or sunlight intensity, etc. We assume
the physical quantity is a wide-sense stationary (WSS) random
process within a time window. A sensor in the system sam-
ples the random process at discrete time intervals, and the
continuous-time random process is estimated with discrete-
time samples. It is assumed that each sampling operation
consumes one unit of energy, and the random energy arrival is
modeled as a Poisson process with parameter λ. The objective
is to identify the optimal sampling scheme, i.e., the sequence
of sampling instants, to minimize the time-averaged estimation
mean squared error (MSE) under stochastic energy constraints.
This is a stochastic optimization problem, and it is in general
difficult to solve.

We focus on a special class of random processes with
power-law decaying covariance, which enables us to find an
asymptotically optimal solution to the problem. The power-
law decaying covariance is observed in data collected from
a variety of applications, such as the yields on an agricul-
tural field [7], DNA sequences [8], condensed matter physics
[9] [10], and long-range dependence of fractional Gaussian
noise [11], etc. We first derive the explicit inverse of the
covariance matrix, which is used to formulate the linear
minimum MSE (MMSE) estimation of the random process.
It is discovered that, with a power-law covariance, the MMSE
estimation of a point on the random process using only the
two adjacent discrete-time samples bounding the point yields
exactly the same results as using all of the discrete-time
samples. Therefore the random process exhibits a Markovian
property in terms of MMSE estimation, in a sense that the
estimation of each point requires only the knowledge of the
two immediately adjacent samples. Such a Markovian property
enables the identification of an analytical lower bound of the
time-averaged MSE.

Motivated by the special structure of the MSE lower bound,
we propose a simple best-effort uniform sampling scheme,
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where the sensor samples the random process at time instants
n/λ, n = 1, 2, . . . as long as it has sufficient energy, and it
remains silent otherwise. Such a sampling scheme does not
require the knowledge of future energy arrivals. It is shown
through both theoretical analysis and computer simulations
that, for almost every energy harvesting sample path, the new
best-effort uniform sampling scheme asymptotically achieves
the MSE lower bound as the observation time becomes suffi-
ciently large. Therefore, the best-effort sampling scheme is an
asymptotically optimal solution to the stochastic optimization
problem.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Energy Harvesting Model

Consider a sensor node powered by energy harvested from
the ambient environment. It is assumed that the sensor node
has an energy queue, such as a rechargeable battery or a super
capacitor, to store the harvested energy. The energy queue is
replenished randomly and consumed by taking observations.
It is assumed that a unit amount of energy is required for one
sensing operation. Since the harvested energy is usually very
small compared to the battery capacity, it is assumed that the
size of the energy queue is unlimited.

The energy arrival follows a Poisson process with parameter
λ. Hence, energy arrivals occur in discrete time instants.
Specifically, we use t1, t2, . . . , tn, . . . to represent the energy
arrival epochs. Then, the energy inter-arrival times ti − ti−1
are exponentially distributed with means 1/λ. Without loss of
generality, it is assumed that the system starts with an empty
energy queue at time 0.

A sampling policy or sensing scheduling policy is denoted
as {ln}, where ln is the n-th sensing time instant. Since
energy that has not arrived yet cannot be used at the current
time, there is a causality constraint on the sampling policy.
Specifically, we use

∑∞
n=1 1tn<t and

∑∞
n=1 1ln≤t to denote

the total number of energy arrivals and sensing epochs up
to time t, respectively. Here 1E is an indicator function. It
equals 1 if E is true, and equals 0 otherwise. Then, the energy
causality constraint can be formulated as

∞∑
n=1

1tn<t ≥
∞∑
n=1

1ln≤t, ∀t > 0 (1)

B. Sensing and Estimation Model

At each sensing epoch, the sensor collects a time-dependent
physical quantity, x(t), such as the temperature, humidity, or
the pH value of the soil, etc. Due to the temporal redundancy
of the monitored object, the data samples collected by the
sensors are assumed to be correlated in the time domain.
We assume {x(t)} is a zero-mean WSS random process. The
covariance between two data samples collected at lm and ln
is assumed to satisfy the power-law decaying model as

E [x(lm)x(ln)] = ρ|lm−ln|, (2)

where ρ ∈ [0, 1] is the power-law coefficient. Define a vector
containing the N data samples collected by the sensor as x =

[x(l1), · · · , x(lN )]T ∈ RN×1.
The sensing system attempts to reconstruct the continuous-

time random process by using discrete-time samples collected
by the sensors. The linear MMSE estimate of the random
process at an arbitrary time t can be expressed as

x̂(t) = rTt R
−1
xxx (3)

rt = E[x(t)xT ] ∈ RN×1, and Rxx = E
[
xxT

]
∈ RN×N . The

corresponding MSE for the reconstructed signal at time t is

σ2(t) = E
[
|x̂(t)− x(t)|2

]
= 1− rTt R

−1
xx rt (4)

where x̂(t) is an estimate of x(t).

C. Problem Formulation

Our objective is to design an online sensing policy {ln},
such that the expected long-term average MSE is minimized,
subject to the energy constraint at every time instant. The
optimization problem is formulated as

min
{ln}

lim sup
T→+∞

E

[
1

T

∫ T

0

σ2(t)dt

]
(5)

s.t.
∞∑
n=1

1tn<t ≥
∞∑
n=1

1ln≤t, ∀t > 0 (6)

where the expectation in the objective function is taken over all
possible energy harvesting sample paths. This is a stochastic
optimization problem, and in general is hard to obtain a closed-
form optimal solution. Moreover, the complex form of the
objective function makes the problem even more complicated.
In the following sections, we will show that the objective
function is analytically tractable with a power-law covariance,
and identify the properties of the corresponding optimal solu-
tion. The properties motivate a best-effort uniform sampling
strategy, which is then proven to be asymptotically optimal as
T →∞.

III. STATISTICAL PROPERTIES OF MMSE ESTIMATION

In this section, we study the statistical properties of the
random process obtained from the linear MMSE estimation.
The analysis is enabled by an explicit expression of the inverse
covariance matrix with power-law elements. Results obtained
in this section will be used to identify the optimum sensing
policy in an energy harvesting sensing system in the next
section.

A. MMSE Estimation

Theorem 1 Consider the linear MMSE estimation of x(t) by
using the N discrete samples {x(lk)}Nk=1 with l1 < l2 · · · <
lN , as described in (3).

If ln < t < ln+1 for n = 1, · · · , N − 1, then

x̂(t) =
ρt−ln − ρ−(t−ln)a2n+1

1− a2n+1

× x(ln)+

ρln+1−t − ρ−(ln+1−t)a2n+1

1− a2n+1

× x(ln+1) (7)
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where an = ρln−ln−1 for n = 2, · · · , N , and a1 = aN+1 = 0.
If t < l1, then

x̂(t) = ρl1−t × x(l1) (8)

If t > lN , then

x̂(t) = ρt−lN × x(lN ) (9)

Due to space limitations, the proof of Theorem 1, as well
as the proofs of Corollaries 1, 2 and 3, Lemmas 1, 2 and
Theorem 3, are omitted in this paper. All proofs can be found
in [12].

The results in Theorem 1 state that the MMSE estimation
of the random process with a power-law decaying covariance
has a Markovian behavior, that is, the estimation of x(t)
with ln < t < ln+1 only requires the knowledge of x(ln)
and x(ln+1), the two closest samples bounding t. The N -
dimensional estimation problem is thus reduced to a two-
dimensional estimation problem with a fixed complexity. We
have the following corollary regarding a closed-form expres-
sion of the MSE σ2(t).

Corollary 1 For the MMSE estimator described in Theorem
1, the MSE, σ2(t) = E

[
|x̂(t)− x(t)|2

]
, is

σ2(t) =
1 + a2n+1 − ρ2t−2ln − ρ2ln+1−2t

1− a2n+1

(10)

where ln ≤ t ≤ ln+1 for n = 0, · · · , N , with l0 = −∞
and lN+1 = ∞, and an = ρln−ln−1 for n = 2, · · · , N and
a1 = aN+1 = 0.

Corollary 1 indicates that for ln ≤ t ≤ ln+1, σ2(t) only
depends on two sensing instants ln and ln+1. This implies
that the objective function in (5) can be decomposed into a
summation of integrals, where each integral covers one interval
[ln, ln+1], for n = 0, · · · , N .

Corollary 2 Let fn+1 =
∫ ln+1

ln
σ2(t)dt with σ2(t) given in

(10) for n = 1, 2, . . . , N − 1. Then, fn+1 is a function of
ln+1 − ln := dn+1, denoted as f(dn+1), with

f(d) = d
1 + ρ2d

1− ρ2d
+

1

log ρ
(11)

The function f(d) has the following properties
1) f(0) = 0.
2) f(d) is monotonically increasing in d.
3) f(d) is a convex function for d ≥ 0.

Corollary 3 Let f1 =
∫ l1
0
σ2(t)dt and fN+1 =

∫ T
lN
σ2(t)dt

with σ2(t) given in (10). Then f1 = g(d1) and fN+1 =
g(dN+1), with

g(d) = d+
1

2 log ρ

(
1− ρ2d

)
(12)

Moreover, we have g(d) ≥ f(d).

Corollaries 2 and 3 state that if N samples are taken over
(0, T ), then, for any duration bounded by two consecutive

sampling epochs, the total MSE for the estimation over that
duration has a common structure, which is a function of the
length of the duration. The estimation MSE over [0, l1] and
[ln, T ] has a different form, due to the fact that they have
only one bounding sampling epoch.

From Corollaries 2 and 3, the time-averaged MSE in the
cost function in (5) can be written as

1

T

∫ T

0

σ2(t)dt =
1

T

[
g(d1) +

N∑
n=2

f(dn) + g(dN+1)

]
,

≥ 1

T

N+1∑
n=1

f(dn) (13)

where the time-averaged MSE is decomposed as the sum-
mation of a sequence of increasing and convex functions of
intervals bounded by two consecutive discrete-time samples.
As T → ∞, it is expected that the boundary functions g(d1)
and g(dN+1) will have negligible impacts on the average
MSE.

IV. AN ASYMPTOTICALLY OPTIMAL SAMPLING POLICY
UNDER STOCHASTIC ENERGY CONSTRAINTS

The optimization problem in (5) is stochastic and in general
hard to solve. However, with Corollaries 2 and 3, we first show
that the optimal solution has a lower bound, which corresponds
to a uniform sampling policy with a fixed sampling rate.
Motivated by this observation, we then propose a uniform best-
effort sampling policy and prove its optimality by showing
that the uniform best-effort policy asymptotically achieves the
lower bound.

A. A Lower Bound of the Average MSE

Definition 1 A sampling policy {ln} is feasible if E(l−n ) ≥ 1,
∀n ≥ 1, where E(t) is the energy available in the energy
queue at time t, and l−n is the time instant right before ln.

Lemma 1 Under every feasible scheduling policy, we have

lim sup
T→+∞

NT
T
≤ λ, a.s. ∀i (14)

where NT =
∑∞
n=1 1ln≤T is the total number of samples

taken in [0, T ].

Based on the properties of function f(d) stated in Corol-
lary 2 and Lemma 1, we establish the following lower bound
on the objective function.

Lemma 2 The objective function in (5) is lower bounded as

min
{ln}

lim sup
T→+∞

E

[
1

T

∫ T

0

σ2(t)dt

]
≥ λf (1/λ) (15)

B. A Best-effort Sampling Policy

Motivated by the lower bound in Lemma 2, we propose a
best-effort sampling policy that asymptotically achieves the
MSE lower bound as T → ∞. During the derivation of
the lower bound, we note that the equality can be achieved
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if d1 = d2 = · · · = 1
λ . Therefore, the lower bound can

be achieved if uniform sampling with a sampling period 1
λ

is employed. However, due to the stochastic nature of the
energy sources, uniform sampling is in general infeasible in
energy harvesting sensing systems. We thus propose a best-
effort uniform sampling policy described as follows.

Definition 2 (Best-effort Sampling Policy) The sensor is
scheduled to perform the sensing task at ln = n/λ. The sensor
performs the sensing task at ln if E(l−n ) ≥ 1; Otherwise, the
sensor keeps silent until the next sensing epoch.

The best-effort uniform sampling policy is always feasible
because it only samples the random process if there is suf-
ficient energy left in the energy queue. With the proposed
best-effort sampling policy, the sensor attempts to sample the
random process at uniform intervals, but will only do so if
there is sufficient energy for the sampling operations. As a
result, the interval bounded by two consecutive samples varies
due to the stochastic availability of the energy sources, and the
interval is always an integer multiple of 1/λ.

We will show next that the proposed best-effort sampling
policy can asymptotically achieve the MSE lower bound given
in Lemma 2, which states the best possible MSE achievable
for all possible sampling policies.

Theorem 2 Under the best-effort uniform sampling policy, we
have

lim
T→+∞

NT
T

= λ a.s.

The proof of Theorem 2 is provided in the Appendix.

Theorem 3 The uniform sampling policy {ln} is optimal, i.e.,

lim sup
T→+∞

[
1

T

∫ T

0

σ2(t)dt

]
= λf (1/λ) a.s.

Theorem 2 indicates that the best-effort sampling scheme
is asymptotically feasible almost surely, i.e., the sensor has
sufficient energy to perform the task for almost every sched-
uled sampling epoch. Theorem 3 indicates that for almost
every energy harvesting sample path, the average estimation
MSE given by the MMSE estimator with samples collected
according to the best-effort sampling scheme converges to the
lower bound. Therefore, the best-effort sampling policy is an
asymptotically optimal solution to the stochastic optimization
problem in (5).

V. NUMERICAL AND SIMULATION RESULTS

Numerical and simulation results are provided in this section
to demonstrate the performance of the best-effort sampling
policy.

Fig. 1 plots the graph of the function f(d), which is the
MSE integrated over the time duration between two consec-
utive sensing epochs. As shown in Corollary 2, f(d) is an
increasing and convex function in d, and f(0) = 0. A larger ρ

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

d

f(
d
)

 

 

ρ=0.7

ρ=0.8

ρ=0.9

Fig. 1: Numerical evaluation of f(d) as a function of the
distance between two consecutive sensing epochs.

yields a smaller f(d) due to the stronger correlation between
the two samples.

Next, we evaluate the performance of the proposed best-
effort sampling policy through simulations in Fig. 2. The
energy harvesting rates are set to be λ = 1, 2, 3 per unit
time, respectively. For each λ, 1,000 energy harvesting profiles
are generated according to the Poisson distribution, and the
best-effort sampling is performed for each energy harvesting
profile. The sensing rate, NT /T , for each energy harvesting
profile is tracked and recorded. The average sensing rate for
the 1,000 sample paths is plotted as a function of T in Fig. 2.
It is observed that the average sensing rate approaches λ
asymptotically as T increases, as predicted in Theorem 2. Thus
the best-effort sampling policy asymptotically approaches the
behavior of uniform sampling when T > 400.

The simulation MSE obtained by employing the best-effort
sampling policy is shown in Figs. 3 and 4 for various values
of λ and ρ. The MSE is averaged over 1, 000 independently
generated energy harvesting profiles. In Fig. 3, the value ρ is
fixed at 0.9. In Fig. 4, λ = 1. It is observed from both figures
that the MSE curves gradually approach their respective lower
bounds λf(1/λ) as T increases. When T = 500, there is only
a very small difference between the simulation MSE and the
analytical lower bound. The results indicate that the proposed
best-effort sampling policy is asymptotically optimal.

In addition, in Fig. 3, the MSE is a decreasing function in λ.
This indicates that the sensing performance strictly improves
when the energy harvesting rate increases, which is intuitive
since more sensing samples can be collected per unit time on
average. In Fig. 4, the MSE is a decreasing function in ρ. This
is due to the fact that a stronger correlation results in a better
estimation.

VI. CONCLUSIONS

The optimal sampling policy of a WSS random process
with a power-law decaying covariance function was studied
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Fig. 2: Average sensing rate as a function of T .
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Fig. 3: Average sensing rate as a function of T (ρ = 0.9).

for a sensing system powered by energy harvesting devices.
There are two major contributions of this work. First, we
explicitly identified the optimal linear MMSE estimation of
a random process with power-law decaying covariance, and
showed that the optimal estimation of any point in an interval
bounded by two consecutive samples relies only on the two
bounding samples of the interval. Second, we presented an
asymptotic optimal sampling policy that minimizes the time-
average estimation MSE under stochastic energy constraints.
The sampling policy was motivated by the structure of the
MSE lower bound, which was derived by using the Markovian
property of the MMSE estimation. Even though the asymptotic
results require the sensing time T → ∞, simulation results
demonstrated that the performance of the proposed best-effort
sampling policy approaches the MSE lower bound when
T ≥ 500.
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Fig. 4: Average sensing rate as a function of T (λ = 1).

APPENDIX
PROOF OF THEOREM 2

The uniform best-effort sampling policy partitions the time
axis into slots, each with length 1/λ. Consider the number of
energy arrivals during a slot, denoted as A. Due to the Poisson
process assumption of the energy arrival process, we have

P [A = k] =
e−1

k!
, k = 0, 1, 2 . . .

Let E(n/λ) be the energy level of the sensor right be-
fore the scheduled sensing epoch n/λ. Based on E(n/λ),
we can group the time slots into segments with lengths
u0, v1, u1, . . . , vk, uk, . . ., where uis correspond to the seg-
ments when E(n/λ) = 0 and vis correspond to the segments
when E(n/λ) > 0, as shown in Fig. 5. E jumps from
zero to some positive value ei at the end of the segment
corresponding to ui. Therefore, ui follows an independent
geometric distribution

P
[
ui =

k

λ

]
= e−(k−1)(1− e−1), k = 1, 2 . . .

and vi follows a “random walk” with increment A−1 starting
at some positive level ei until it hits 0. Note that vi contains
a random walk Γi which starts at ei and finishes at ei− 1 for
the first time. Denote the duration of Γi as τi.

Let KT be the number of segments with E(n/λ) = 0
during T . Note that T = NT /λ +

∑KT

i=0 ui. Therefore, to
show NT /T → λ almost surely, it suffices to show that

lim
T→∞

∑KT

i=0 ui
T

= 0, a.s.

Note that∑KT

i=0 ui
T

=

∑KT

i=0 ui
KT

KT

T
≤
∑KT

i=0 ui
KT

KT∑KT

i=1 τi

Therefore, if we can prove that P [vi <∞] = 1, then KT →
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Fig. 5: An energy level evolution sample path. Crosses repre-
sent actual sensing epochs.

∞ as T →∞. In addition, by the strong law of large numbers,

lim
T→∞

∑KT

i=0 ui
KT

=
1

λ(1− e−1)
, a.s.

Then, to prove Theorem 2, it suffices to show that

lim
T→∞

KT∑KT

i=1 τi
= 0, a.s. (16)

In the following, we will first prove P [vi <∞] = 1, and then
show (16) holds.

Consider a “random walk” {Ωk}∞k=0, which starts with 1
and increments with A− 1. Denote the first 0-hitting time for
{Ωk}∞k=0 as κ. Then, Ω0 = 1,Ωκ = 0.

Define a Martingale process {exp(−αΩk−γ(α)k)}∞k=0 with
α > 0 and γ(α) = λ(e−α − (1 − α)) > 0. Based on the
property of a Martingale, we have

E [exp(−αΩk − γ(α)k)]

= E [E [exp(−αΩk − γ(α)k)|Ω1, . . . ,Ωk−1]]

= E [exp(−αΩk−1 − γ(α)(k − 1))]

Applying this equality recursively, we have

exp(−α) = E [exp(−αΩκ − γ(α)κ)] (17)
= E [(1κ<∞ + 1κ=∞) · exp(−αΩκ − γ(α)κ)]

= E [1κ<∞ · exp(−αΩκ − γ(α)κ)] (18)

where the equality in (18) holds due to the fact that
exp(−γ(α) · ∞) = 0. Let α → 0+, then γ(α) → 0+, and
the equation becomes

1 = E [1κ<∞] = P [κ <∞]

i.e., the probability of hitting 0 in finite time is 1.

Similarly, we can prove that starting with any ei > 0, the
probability that the first 0-hitting time is finite equals 1, i.e.,
P[vi <∞] = 1.

Since Ωκ = 0, (17) is equivalent to

E [exp(−γ(α)κ)] = exp(−α).

We note that by shifting Γi to initial state 1, it virtually follows
the same random walk {Ωk}k. For such KT i.i.d random walks

with 0-hitting times τi, we have

E

[
exp

(
−γ(α)

(
KT∑
i=1

τi

))]
= exp(−KTα), (19)

Therefore,

P

[
KT∑KT

i=1 τi
> ε

]
= P

[
KT∑
i=1

τi <
KT

ε

]

= P

[
exp

(
−γ(α)

(
KT∑
i=1

τi

))
> exp

(
−γ(α)

KT

ε

)]
(20)

≤ exp(−KTα)

exp(−γ(α)KT

ε )
= exp

(
−KT

(
α− γ(α)

ε

))
(21)

where (20) follows from the monotonicity of e−x and (19),
and (21) follows from Markov’s inequality.

Since γ(α) = O(α2), for any ε > 0, we can always find
a α to have α − γ(α)

ε > 0, and then the probability decays
exponentially in KT . According to Borel-Cantelli lemma [13],
we have (16) hold, which completes the proof.
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