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Abstract—In this paper, we seek answer to the question: can
a wireless sensing system with energy harvesting power supplies
perform as well as one with conventional power supplies? Due to
the stochastic nature of the energy harvested from the ambient
environment, uniform sampling employed by conventional sensing
systems is usually infeasible for energy harvesting sensing systems.
We propose a simple best-effort sensing scheme, which defines
a set of equally-spaced candidate sensing instants. At a given
candidate sensing instant, the sensor will perform sensing if there
is sufficient energy available, and it will remain silent otherwise.
It is analytically shown that the percentage of silent candidate
sensing instants diminishes as time increases, if and only if
the average energy harvesting rate is no less than the average
energy consumption rate. The theoretical results are then used
to guide the design of a practical sensing system that monitors
a time-varying event. Both analysis and simulations show that
the energy harvesting system with the best-effort sensing scheme
can asymptotically achieve the same mean squared error (MSE)
performance as one with uniform sensing and deterministic energy
sources. Therefore, we provide a positive answer to the question
from both theoretical and practical aspects.

I. INTRODUCTION

Wireless sensing systems are usually expected to operate

uninterruptedly and autonomously over years or decade under

extremely stringent energy constraints. Such design objectives

necessitate the development of systems powered by energy

harvesting devices that can collect energy from the ambient

environment. The amount of harvested energy can be modeled

as a stochastic process. The stochastic nature of the energy

sources is fundamentally different from the deterministic energy

sources employed by conventional systems.

There have been growing interests in the development of

energy harvesting communications and sensing systems by

optimizing communication related metrics, such as transmission

delay or throughput [13], [1], [11], [12]. Many of the works use

an off-line deterministic scheduling method, which identifies

the optimum transmission scheduling based on full knowledge

of current and future energy arrivals. The off-line scheduling

methods treats future energy arrival as a deterministic process

even though the actual energy harvesting process is stochastic.

Online scheduling methods address this problem by using only
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the statistics of energy arrivals. The off-line and online schedul-

ing for systems with fading channels are discussed in [6], where

the online scheduling problem is formulated as a stochastic

dynamic programming problem with high complexity. Low

complexity sub-optimum on-line algorithms are presented in

[6] for fading channel and in [8] for interference channel. In

both works, the performance of all on-line scheduling policies

is strictly worse than that of the off-line scheduling.

Another branch of work focuses on sensing and signal pro-

cessing related performance metrics, such as estimation mean

squared error (MSE), and detection delay, etc. In [10], the esti-

mation MSE of a sparse signal in an energy harvesting sensing

system is minimized by using a random transmission scheme

under the energy causality constraint. The sensing energy is

assumed to be negligible in [10]. Optimum energy allocation

schemes are discussed in [3] for the “quickest detection” of

the changing point of an event monitored by energy harvesting

sensor networks.

All of the works above show that the performance of energy

harvesting systems is in general inferior to systems with con-

ventional deterministic energy sources, even if optimal sensing

policies are developed based on the stochastic properties of the

energy sources.

Naturally we would ask the question: can an energy harvest-

ing sensing system with stochastic energy sources perform as

well as a conventional sensing system powered by deterministic

energy sources? We seek the answer to this question from two

aspects: from the theoretical aspect in terms of the stochastic

properties of the available energy at a given time, and from the

practical aspect in terms of the MSE performance of a sensing

system. For a conventional sensing system with deterministic

energy sources, uniform sampling is optimum over the duration

in which the signal is wide sense stationary (WSS) [9], [7].

However, due to the randomness in the energy arrival process,

uniform sampling might be infeasible in energy harvesting

systems. We thus propose a simple best-effort sensing policy

that defines a set of equally-spaced candidate sensing instants.

At a given candidate sensing instant, the sensor will perform

sensing only if there is sufficient energy to do so, and it will

remain silent otherwise.

By analyzing the stochastic properties of the energy sources,

we will show that the percentage of silent candidate sensing

instants goes to zero as time goes to infinity, if and only if the
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average energy collection rate is no less than the average energy

consumption rate. This means that the difference between

the best-effort sensing policy and the uniform sensing policy

diminishes as time evolves. The theoretical results indicate

that the sensing behaviors of systems with stochastic energy

sources have the potential to approach that of systems with

deterministic energy sources. Guided by the theoretical results,

we then develop optimum sensing and detection schemes for a

practical energy harvesting sensing systems used to monitor

a time-varying WSS event. It will be shown through both

theoretical analysis and simulations that the MSE performance

of the energy harvesting sensing system asymptotically ap-

proaches that of a conventional sensing system with uniform

sensing as time goes to infinity. Simulation results show that

the performance of the two systems converge with as few

as 400 candidate sensing instants. Therefore, we demonstrate

from both theoretical and practical aspects that there is an

asymptotical equivalence between stochastic and deterministic

energy sources.

II. PROBLEM FORMULATION

Consider a sensor used to monitor a time-varying event mod-

eled as a WSS random process s(t), where t is the time variable.

It is assumed that s(t) is zero mean with auto-covariance

function r(t1 − t2) = E[s(t1)s(t2)] = ρ|t1−t2|, where E is the

mathematical expectation operator, and 0 ≤ ρ ≤ 1 is the power-

law coefficient.. The sensor is powered by an energy harvesting

device, which harvests energy from the ambient environment.

The harvested energy can be modeled as a random process, and

it is used by the sensor for sensing operations.

The sensor attempts to reconstruct the continuous-time time-

varying random event by using noise-distorted discrete-time

observations of the random process. A sensing policy is defined

as a sequence of time instants {tn}n, where tn is the time

instant at which the sensor collects a sample of the random

process. The sample collected by the sensor at time tn is

y(tn) =
√

Ess(tn) + z(tn) (1)

where Es is the energy allocated for one sensing sample, and

z(tn) is the sensing and/or channel noise with a zero-mean and

the auto-covariance function E [z(t1)z(t2)] = σ2
zδ(t1 − t2). It

should be noted that the noise component is not necessarily

Gaussian distributed.

The sensing system attempts to reconstruct the time-varying

random field, s(t), by using the sequence of the discrete-time

samples, {y(tn)}n. If the sensor is powered by a conventional

power supply, then uniform sampling with tn = nTs is em-

ployed in [7], [9] to achieve the optimum sensing performance

due to the homogenous nature of the random field. However,

uniform sampling might be infeasible for energy harvesting

sensing systems given that there might not be sufficient energy

to perform sensing operations at certain time periods.

III. ASYMPTOTIC EQUIVALENCE BETWEEN STOCHASTIC

AND DETERMINISTIC ENERGY SOURCES

In this section, we first propose a best-effort sensing policy

for systems with stochastic energy sources. We then study

the asymptotic behaviors of the best-effort sensing policy as

time goes to infinity. The analytical results demonstrate the

asymptotic equivalence between stochastic energy sources and

deterministic energy sources.

Due to the random nature of the energy harvesting process,

the harvested energy can be modeled as a random process. We

model the stochastic energy sources as follows: if we divide the

time axis into small intervals with length T0, then the energy

collected in each interval can be modeled as independently and

identically distributed (i.i.d.) random variables E with mean

E0. In addition,
∑∞

n=1 P (E > nǫ) < ∞ for any ǫ > 0. Such

a model is general enough to incorporate many other existing

stochastic energy models, such as the Poisson energy source

[6] or the Bernoulli energy source [3], as special cases.

The harvested energy is stored in an energy storage device,

such as rechargeable batteries or super capacitors. Denote the

amount of energy available in the energy storage device at time

t as Q(t) ≥ 0. Since the harvested energy is usually very

small compared to the capacity of the energy storage device,

it is assumed that the energy queue has unlimited capacity.

The energy consumption must follow the energy causality

constraint, that is, at any time instant, the total amount of

harvested energy must be no less than the total amount of

consumed energy.

Definition 1 (best-effort Sensing Policy): Define a set of

candidate sensing instants as K = {kn|kn = nTs, n =
1, 2, · · · }. A sensor performs one sensing operation with energy

Es at time t if and only if: 1) t ∈ K, and 2) Q(t) ≥ Es.

In the best-effort sensing policy, the sensor tries to per-

form sensing operations at uniform sensing intervals when-

ever allowed by the energy constraint, but remains silence

if Q(nTs) < Es. Denote the information collected at each

candidate sensing instant as a sensing symbol, which could be

either a silent symbol when Q(nTs) < Es or an active symbol

when Q(nTs) ≥ Es. With such a sensing mechanism and the

stochastic energy source, there might be K silent symbols in the

first N ≥ K sensing instants Ts, 2Ts, · · · , NTs. The number

of silent symbols is a random variable.

Theorem 1: Consider an energy harvesting sensing system

employing the best-effort sensing policy described in Definition

1. Assume the amounts of energy collected in each Ts period

are i.i.d random variables E with mean Ec, and
∑∞

n=1 P [E >

nǫ] < ∞ for any ǫ > 0. Define K =
∑N

k=1 1Q(kTs)<Es
as the

total number of silent symbols in the first N symbol periods,

where the indicator function 1E = 1 if the event E is true and

0 otherwise.

If Ec ≥ Es, then

lim
N→∞

K

N
= 0, a.s. (2)

Specifically, if Ec > Es, then for almost every energy harvest-

ing sample path, there exists K̄ < ∞ such that K ≤ K̄ < ∞
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as N → ∞.

Conversely, If Ec < Es, then

lim
N→∞

K

N
> 1− Ec

Es

, a.s. (3)

Proof: Divide the time axis into frames, each of duration

LTs. The m-th frame thus has L candidate sensing instants, and

km ≤ L of them are assumed to be silent. Assume the total

amount of energy collected in the m-th frame is Em, which is

random. The amount of energy consumed in the l-th frame can

be calculated as (L−km)Es. Denote Dm = Em−(L−km)Es

as the difference between the energy harvested and consumed

in the m-th frame. It should be noted that Dm could be either

positive or negative. The total amount of energy available in

the energy queue at the end of the m-th frame is Q(mLTs) =
∑M

m=1 Dm. It should be noted that
∑M

m=1 Dm ≥ 0 due to the

energy causality constraint.

With the best-effort sensing policy, the number of silent

symbols in the M -th frame must satisfy

k
M

≤ max

{

0, L− 1

Es

M−1
∑

m=1

Dm

}

, (4)

because the energy available at the end of the (M−1)-th frame

can be used for the sensing of up to 1
Es

∑M−1
m=1 Dm symbols

in the M -th frame.

1) Case 1: Es > Ec. With the energy causality constraint,

we have
∑M

m=1 Dm ≥ 0, or

M
∑

m=1

Em −MLEs + Es

M
∑

m=1

km ≥ 0 (5)

Divide both sides of (5) by MLEs, and let M → ∞,

lim
M→∞

∑M

m=1 km

ML
≥ 1− 1

Es

lim
M→∞

∑M

m=1 Em

ML
(6)

Based on the strong law of large numbers,

lim
M→∞

∑M

m=1 Em

ML
= Ec, a.s. (7)

In addition, let N = LM , then K =
∑M

m=1 km. Thus (3) can

be obtained from (6) and (7).

2) Case 2: Ec = Es. Index the frames with at least one silent

symbol as M1,M2, · · · ,Mi, · · · , i.e.,

0 < k
Mi

≤ L−
∑Mi−1

m=1 Dm

Es

. (8)

If Mi is upperbounded, that is, there exists M̄ such that km = 0
for all m > M̄ , then K is finite and (2) is true. On the other

hand, if Mi is unbounded, then limi→∞ Mi = ∞. We have

Mi
∑

m=1

Dm =

Mi−1
∑

m=1

Dm + E
Mi

− LEs + k
Mi

Es ≤ E
Mi

, (9)

where the last inequality is based on (8). Dividing both sides

of (9) by LMi and letting i → ∞ (so as Mi), we have

lim
Mi→∞

∑Mi

m=1 Em

LMi

−Es+ lim
Mi→∞

∑Mi

m=1 km

LMi

≤ lim
Mi→∞

EMi

LMi
(10)

Based on the assumption that
∑∞

n=1 P [E > nǫ] < ∞ for any

ǫ > 0, and Borel-Cantelli lemma [5], we have

lim
Mi→∞

EMi

LMi

= 0, a.s.

Combining (10) with (7) yields

lim
N→∞

K

N
≤ 0, a.s. (11)

Since K
N

≥ 0, (2) is true.

3) Case 3: Ec > Es. Proof by contradiction. Assume

limi→∞ Mi = ∞. When Ec > Es, from (7) and (10), we

have

lim
N→∞

K

N
≤ −(Ec − Es) < 0, a.s. (12)

This contradicts with the fact that K
N

≥ 0, thus the assumption

limi→∞ Mi = ∞ cannot be true when Ec > Es. This means

that Mi is finite, thus K is finite as N → ∞.

The results in Theorem 1 state that, there is an asymptotic

equivalence between stochastic energy source and deterministic

energy source as time goes to infinity, if and only if the

average harvested energy in one sample period is no less than

the energy required for one sensing operation. This means

that the performance of the best-effort sensing policy with

stochastic energy sources has the potential to match that of

the uniform sensing policy with deterministic energy sources

as time becomes large enough and Ec ≥ Es. The results hold

for a quite general category of energy harvesting processes.

IV. ASYMPTOTICALLY OPTIMUM SENSING WITH THE

BEST-EFFORT SENSING POLICY

This section studies the optimum design and performance

analysis of sensing systems employing the newly proposed best-

effort sensing policy.

A. Best-effort Sensing with Stochastic Energy Sources

Based on the best-effort sensing policy, the samples collected

during the first N candidate sensing instants can be expressed

by

η =
√

Esx+ z (13)

where η = [η1, · · · , ηN ]T ∈ RN , x = [x1, · · · , xn]
T with

xn = s(nTs) if Q(nTs) ≥ Es and xn = 0 otherwise, and

z = [z(Ts), · · · , z(NTs)]
T . With the best-effort sensing policy,

K out of the N elements in η contain only noise components.

The system attempts to reconstruct the time-varying ran-

dom event s(t) by using the observations, η. Since we

are interested in the reconstruction fidelity of a continuous-

time random event, the worst case scenario will be con-

sidered by estimating {s
(

nTs +
1
2Ts

)

}n, the sequence of

points located in the middle between two candidate sensing

instants. Define the data vector to be estimated as d =
[

s
(

1
2Ts

)

, s
(

3
2Ts

)

, · · · , s
(

NTs − 1
2Ts

)]T
. It should be noted

that s
(

nTs +
1
2Ts

)

will be estimated even if xn = 0 and/or

xn+1 = 0.
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The linear minimum mean squared error (MMSE) estimation

of d based on η is

d̂ =
√

EsRdx [EsRxx +Rzz]
−1

η, (14)

where Rdx = E(dxT ), Rxx = E(xxT ), and Rzz = σ2
zIN

with IN being a size N × N identity matrix. If we assume

the indices of the sampling instants with Q(nTs) < Es being

i1, i2, · · · , i
K

, then the ik-th column of Rdx is an all-zero

column, for k = 1, · · · , K . Similarly, the ik-th row and the

ik-th column of Rxx are all-zero vectors, for k = 1, · · · , K .

The covariance matrix of the error vector, ǫ = d − d̂, can

be written as

Rǫǫ = Rdd −Rdx

[

Rxx +
σ2
z

Es

IN

]−1

Rxd. (15)

Systems with deterministic energy sources can be considered

as a special case of the MMSE receiver described in (13) and

(14). With a deterministic energy source, there will be no silent

symbols, thus the system equation can be expressed as,

y =
√

Ess+ z (16)

where y = [y(Ts), · · · , y(NTs)]
T and s =

[s(Ts), · · · , s(NTs)]
T are the received signal vector and

data vector, respectively. Denote the MMSE estimation of d

from y as d̃ = WT
y y, where WT

y is the linear MMSE matrix.

Similar to (15), the covariance matrix of the error vector,

e = d− d̃, can be written as

Ree = Rdd −Rds

[

Rss +
σ2
z

Es

IN

]−1

Rsd (17)

where Rds = E(dsT ) and Rss = E(ssH) are

Toeplitz matrices. The cross-covariance matrix Rds

is a Toeplitz matrix with the first row being
[

r
(

1
2Ts

)

, r
(

3
2Ts

)

, · · · , r
(

NTs − 1
2Ts

)]

, and the first

column
[

r
(

1
2Ts

)

, r
(

1
2Ts

)

, r
(

3
2Ts

)

, · · · , r
(

NTs − 3
2Ts

)]T
.

The covariance matrix Rss is a symmetric Toeplitz matrix

with the first row being [r(0), r(Ts), · · · , r(NTs − Ts)].
The error covariance matrices for systems with stochastic

and deterministic energy sources are given in (15) and (17),

respectively. The average MSE for systems with stochastic and

deterministic energy sources can then be calculated, respec-

tively, as σ2
ǫ,N = 1

N
trace (Rǫǫ), and σ2

e,N = 1
N

trace (Ree).
Intuitively, σ2

ǫ,N ≥ σ2
e,N since y contains more information

than η. However, due to asymptotic equivalence between the

stochastic and deterministic energy sources as presented in The-

orem 1, we will show in the next subsection that the proposed

best-effort sensing policy can asymptotically achieve the same

performance as the uniform sensing policy as N → ∞.

B. Asymptotic Achievability of the MSE Lower Bound

The asymptotic equivalence between the two sensing

schemes relies on the asymptotic equivalence between se-

quences of matrices.

Lemma 1: Consider two sequences of matrices, {AN}N and

{BN}N . The squares of the elements on any row or column

of the two matrices are absolutely summable as N → ∞.

If the two matrices differ in K1 rows and K2 columns, and

limN→∞
K1+K2

N
= 0, then AN and BN are asymptotically

equivalent, which is denoted as AN ∼ BN .

Proof: Denote the (m,n)-th elements of AN and BN as

amn and bmn, respectively. Since the squares of the elements

on each row or column of the two matrices are absolutely

summable, the matrices are bounded in strong norm. Assume

the two matrices differ in rows r1, · · · , rK1
and columns

c1, · · · , cK2
, then

|AN −BN |2 ≤ 1

N

[

K1
∑

k=1

N
∑

n=1

|arkn − brkn|2+

M
∑

m=1

K2
∑

k=1

|amck − bmck |2
]

(18)

Since the squares of the elements on any row or column are

absolutely summable, then there exists C > 0 such that

∞
∑

n=1

|arkn − brkn|2 ≤
∞
∑

n=1

|arkn|2+
∞
∑

n=1

|brkn|2 < 2C

∞
∑

m=1

|amck − bmck |2 ≤
∞
∑

m=1

|amck |2+
∞
∑

m=1

|bmck |2 < 2C

Thus

lim
N→∞

|AN −BN | <
√
4C lim

N→∞

√

K

N
(19)

Since limN→∞
K
N

= 0, it is straightforward that

limN→∞ |AN −BN | = 0.

From (15) and (17), σ2
ǫ and Rǫǫ depend on Rdx and

Rxx, while σ2
e and Ree depend on Rds and Rss. Since

limN→∞
K
N

= 0 a.s. when Ec ≥ Es, the following result

follows immediately from Lemma 1.

Lemma 2: If Ec ≥ Es in the best-effort sensing policy, then

Rdx ∼ Rds, and Rxx ∼ Rss.

Now we are ready to present the second main result of this

paper in the following theorem, which states the asymptotic

equivalence between systems with stochastic and deterministic

energy sources in terms of MSE performance.

Theorem 2: Consider two sensing systems, one with the

best-effort sensing policy and a stochastic energy source as

described in (13), and one with the uniform sensing policy and

a deterministic energy source as described in (16). If Ec ≥ Es,

then

lim
N→∞

σ2
ǫ,N = lim

N→∞
σ2
e,N . (20)

Proof: Based on [2, Lemma 2], the Toeplitz matrix Rds

is asymptotically equivalent to a circulant matrix, Cds =
UH

NDdsUN , where UN is the unitary discrete Fourier

transform (DFT) matrix with the (m,n)-th element being

(UN )m,n = 1√
N
exp

[

−j2π (m−1)(n−1)
N

]

, and Dds is a diag-

onal matrix with its k-th diagonal element being (Dds)k,k =

Λds

(

k−1
N

)

, where Λds is the discrete-time Fourier transform

(DTFT) of the elements on the first column and row of Rds.
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Similarly, the symmetric Toeplitz matrix Rss is asymptot-

ically equivalent to a circulant matrix, Css = UH
NDssUN ,

where Dss is a diagonal matrix with its k-th diagonal element

being (Dss) = Λss

(

k−1
N

)

, where Λss is the DTFT of the

elements on the first column and row of Rss.

When Ec ≥ Es, we have limN→∞
K
N

= 0 from Theorem 1.

Based on Lemma 2 and [4, Theorem 2.1], we have

Rdx ∼ Rds ∼ Css (21)

Rxx ∼ Rss ∼ Css (22)

Therefore, based on [4, Theorem 2.1], we have Rǫǫ ∼ Ree ∼
Cee, where Cee is a circulant matrix defined as

Cee = Css −Cds

[

Css +
σ2
z

Es

IN

]−1

CH
ds (23)

The circulant matrix Cee can be expressed as Cee =
UH

NDeeUN , where Dee is a diagonal matrix defined as

Dee = Dss −Dds

[

Dss +
σ2
z

Es

IN

]−1

DH
ds. (24)

Therefore, both error covariance matrices are asymptotically

equivalent to the same circulant matrix. Based on Szego’s

Theorem [2], when N → ∞, we have

lim
N→∞

σ2
ǫ,N = lim

N→∞
σ2
e,N =

∫ 1

2

− 1

2

[

Λss(f)−
|Λds(f)|2

Λss(f) +
σ2
z

Es

]

df.

Theorem 1 provides the theoretical foundation on the asymp-

totic equivalence between stochastic and deterministic energy

sources, and Theorem 2 demonstrates such equivalence can be

achieved in practical systems.

V. NUMERICAL AND SIMULATION RESULTS

Numerical and simulation results are presented in this section

to demonstrate the asymptotic equivalence between systems

with stochastic and deterministic energy sources.

Fig. 1 shows the value of K
N

as a function of N for

systems with various stochastic energy sources, where K is the

number of silent sensing symbols and N is the total number

of candidate sensing symbols. All systems employ the best-

effort sensing policy proposed in this paper. The convergence

behaviors of K
N

are demonstrated for Ec = 0.9Es, Ec = Es,

and Ec = 1.1Es, respectively. The simulation results are

obtained by averaging over 100 independent runs for each

configuration. The exponential energy source is modeled as

E = |V (t)|2, where V (t) is a zero-mean symmetric complex

Gaussian random process with covariance function E[V (t +
τ)V ∗(t)] = σ2

vδ(τ). The energy collected in an interval Ts

thus follows an exponential distribution with mean Es = σ2
vTs.

All three energy sources have similar convergence behaviors

as N increases. When Ec ≥ Es and N > 100, the value of

log K
N

decreases almost linearly with respect to logN , and the

absolute slope increases as Ec

Es
increases. The simulation results

conform to Theorem 1, which states that limN→∞
K
N

= 0 when

10
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Ec=0.9Es
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Ec=1.1Es

Fig. 1. K/N for various energy sources.

Ec ≥ Es. On the other hand, when Ec = 0.9Es, K
N

tends to

a constant value 0.1, as N → ∞. The constant value is the

same as the lower bound, 1 − Ec

Es

, predicted by Theorem 1.

The results in Fig. 1 demonstrate through simulations that the

percentage of silent sensing symbols diminish as time goes to

infinity as long as Ec ≥ Es. The actual distributions of the

energy sources have no impact on the convergence behavior.

Fig. 2 compares the MSE performance of systems with both

stochastic and deterministic energy sources. The best-effort

sensing policy is employed by systems with stochastic energy

sources, and uniform sensing is employed by systems with

deterministic energy sources. The stochastic energy sources are

the exponential sources with mean Ec = Es. All systems have

the same average power P = Es

Ts
with the normalized signal-

to-noise ratio (SNR) γ0 = P
σ2
z

being 5 dB. The power-law

coefficient is ρ = 0.9. As expected, the MSE performance of

systems with deterministic energy sources is consistently better

than that of systems with stochastic energy sources. However,

the performance gap narrows as N increases. When N = 400,

the MSE performance of the two systems are almost identical,

and they coincide with the asymptotic MSE obtained with

N → ∞. Therefore, when N is sufficiently large, the best-

effort sensing policy can achieve a performance that is almost

the same as the uniform sensing policy. Thus the results in Fig.

2 demonstrate the asymptotic equivalence between stochastic

and deterministic energy sources in a practical system.

In addition, it can be seen from Fig. 2 that the MSE is

convex when N is small (N = 10 or 50), and it becomes a

monotonically decreasing function when N is large (N = 400).

Under a fixed power, a larger sampling rate means less energy

per sample, which might degrade the system performance.

On the other hand, a larger sampling rate means a stronger

correlation between two adjacent samples, which contributes

positively to the MSE performance. Therefore changing the

sampling rate results in different tradeoffs between energy per
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Fig. 2. MSE as a function of the sampling frequency (ρ = 0.9).

sample and sample correlations. When N is large enough,

increasing the sampling rate beyond a certain threshold (e.g.

Rs = 1 Hz when N = 400) has negligible impact on the MSE

performance.

Fig. 3 shows the simulation and analytical MSE of systems

with stochastic energy sources as functions of the SNR. The

sampling rate is 1 Hz. The analytical results with finite N

are calculated from (15). The simulation results are obtained

through Monte Carlo simulations, where the data are generated

as a zero-mean Gaussian random process with the covariance

function satisfying the power-law relationship. Each point on

the curve is averaged over 1,000 independent simulation runs.

The simulation results match the analytical results very well. As

expected, the MSE decreases as ρ or N increases. In addition,

the MSE with N = 400 is almost the same as the asymptotic

MSE obtained with N → ∞.

VI. CONCLUSIONS

The asymptotic equivalence between stochastic and deter-

ministic energy sources have been demonstrated through both

theoretical analysis and practical examples. To account for

the stochastic nature of energy harvested from the ambient

environment, a best-effort sensing policy has been proposed for

energy harvesting sensing systems. It has been shown that the

difference between the best-effort sensing scheme and the ideal

uniform sensing scheme diminishes as time goes to infinity, if

and only if the average energy collection rate is no less than

the average energy consumption rate, regardless of the actual

distribution of the stochastic energy source. The asymptotic

equivalence has been used for the development of an optimum

energy harvesting sensing system. It has been shown through

both theoretical analysis and simulation results that systems

with the best-effort sensing scheme and stochastic energy

sources can achieve almost the same MSE performance as
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Fig. 3. MSE as a function of the SNR for systems with stochastic energy
sources (Rs = 1 Hz).

systems with uniform sensing and deterministic energy sources

when the number of samples is greater than 400.
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