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Abstract—In this paper, we study the optimal sensing schedul-
ing policy for an energy harvesting sensing system equipped with
a finite battery. The objective is to strategically select the sensing
epochs such that the long-term average sensing performance
is optimized. In the sensing system, it is assumed that the
sensing performance depends on the time duration between
two consecutive sensing epochs. Example applications include
reconstructing a wide-sense stationary random process by using
discrete-time samples collected by a sensor. The randomness of
the energy harvesting process and the finite battery constraint at
the sensor make the optimal sensing scheduling very challenging.

Assuming the energy harvesting process is a Poisson random
process, we first identify a performance limit on the long-term
average sensing performance of the system without the finite
battery constraint. We then propose an energy-aware adaptive
sensing scheduling policy, which dynamically chooses the next
sensing epoch based on the battery level at the current sensing
epoch. We show that as the battery size increases, the sensing
performance under the adaptive sensing policy asymptotically
converges to the performance limit of the system with an infinite
battery, thus it is asymptotically optimal. The convergence rate
is also analytically characterized.

I. INTRODUCTION

In order to build a self-sustainable wireless sensor network,
powering sensor nodes with energy harvesting devices be-
comes a natural and feasible solution. However, the random,
scarce and non-uniform energy harvested from the ambient
environment also necessitates a completely different approach
to energy management. Different energy management schemes
have been proposed to cope with the stochastic nature of
harvested energy from different perspectives. Under the infinite
battery assumption, optimal energy management policies have
been proposed to maximize the communication and sensing
performances under different settings [1]–[5]. However, when
finite battery assumption is imposed, it changes the problem
dramatically, and makes the corresponding optimal energy
management much more complicated. One approach is to
formulate the energy management problem as a one-shot
offline optimization problem, under the assumption that the
energy harvesting profile is known in advance. Examples
include the throughput maximization problems studied in [6]–
[8], where the the optimal policies are significantly different
from their counterparts in an infinite battery setting [1], [2],
[9]. Another approach is to formulate the optimal energy
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management problem as an online stochastic control problem,
assuming that only the statistics and the history of the energy
harvesting process are available at the controller. Modeling the
energy replenishing process as a Markov process, [10] aims
to maximize the time average reward by making decisions
regarding whether to transmit or discard a packet based on
the current energy level. The optimal policy is shown to
have a threshold structure. [11] studies the performance limits
of a sensing system where the battery size and the data
buffer are finite and proposes an asymptotically optimal energy
management scheme. The dynamic activation of sensors with
unit battery in order to maximize the sensing utility is studied
in [12]. In general, online optimal energy management policies
under a finite battery constraint are often very difficult to
characterize. Explicit solutions only exist for certain special
scenarios.

In this paper, we consider the optimal online sensing
scheduling policy of an energy harvesting sensing system
under finite battery constraint. We aim to investigate the
impact of finite battery size on the sensing performance, and
characterize the fundamental performance limits of the sensing
system. Specifically, we assume that the energy harvesting
process is a Poisson process, and each sensing operation con-
sumes one unit amount of energy. Harvested energy enters the
battery, and is then consumed by sensing operations. Battery
overflow happens when the energy level exceeds the battery
capacity. Assuming the sensing performance is a function of
the durations between any two consecutive sensing epochs, our
objective is to strategically place sensing epochs in a way so
that the long-term average sensing performance is optimized.
As a first step, we assume the sensing performance over
a sensing duration (0, T ) is measured by

∑
n f(dn), where

dn is the duration between two consecutive sensing epochs.
Moreover, we assume that f(d) is convex and increasing in
d, and f(d)/d is increasing in d and upper bounded. One
example application is to use samples collected at discrete
time instances to estimate a time evolving physical quantity
(temperature, humidity, etc), which can be modeled as a
random process with power-law decaying covariance [4].

we first identify a lower bound on the long-term time
average sensing performance under any sensing scheduling
policy for the system without the finite battery constraint.
We then propose an energy-aware adaptive sensing scheduling
policy, which dynamically chooses the next sensing epoch
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based on the battery level at the current sensing epoch. We
show that sensing scheduling policy achieves a performance
close to that with an unlimited battery size.

The problem we consider is similar to that in [11], however,
it is also significantly different from it. [11] considers a time-
slotted system, while the objective is to vary the amount
of energy spent in each time slot to optimize the system
performance. However, we consider a continuous-time system
in this paper, and the proposed asymptotically optimal design
varies the sensing frequency in time. Since the durations
between sensing epochs are not equal, it makes the analysis
of the system performance under the proposed policy much
more challenging.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Energy Harvesting Model

Consider a sensor node powered by energy harvested from
the ambient environment. We assume that the sensor node has
an energy queue, such as a rechargeable battery or a super
capacitor, to store the harvested energy. The energy queue is
replenished randomly and consumed by taking observations.
It is assumed that a unit amount of energy is required for
one sensing operation. Assume each sensor is equipped with
a finite battery with capacity B.

The energy arrival follows a Poisson process with parameter
1. Hence, energy arrivals occur in discrete time instants.
Specifically, we use t1, t2, . . . , tn, . . . to represent the energy
arrival epochs. Then, the energy inter-arrival times ti − ti−1
are exponentially distributed with mean 1. Without loss of
generality, it is assumed that the system starts with an empty
energy queue at time 0.

A sampling policy or sensing scheduling policy is denoted
as {ln}∞n=1, where ln is the n-th sensing time instant. Let
l0 = 0. Let dn := ln − ln−1, n = 1, 2, . . .. Define A(dn) as
the total amount of energy harvested in [ln−1, ln), and E(l−n )
as the energy level of the sensor right before the scheduled
sensing epoch ln. Then, under any feasible sensing scheduling
policy, the energy queue evolves as follows

E(l−n+1) = min{E(l−n )− 1 +A(dn+1), B} (1)
E(l−n ) ≥ 1 (2)

for n = 1, 2, . . .. Based on the Poisson arrival process assump-
tion, A(dn+1)s are independent Poisson random variables with
parameters dn+1s.

B. Sensing Performance Metric

We assume the sensing performance depends on how the
sensing epochs are placed in time. Given that the durations
between two consecutive sensing epochs are dn, n = 1, 2, . . .,
the sensing performance over the sensing period is measured
by
∑
n f(dn). We assume that function f(d) has the following

properties:
1) f(d) is convex and monotonically increasing in d.
2) f(d)/d is increasing in d.
3) f(d) ≤ Cd, where C is a positive constant.

One example application that fits this model is to use
samples collected at discrete time instances to estimate a time
evolving physical quantity (temperature, humidity, etc), which
is modeled as a random process with power-law decaying
covariance. For such special random processes, it is shown
that the linear minimum MSE (MMSE) estimation for any
point on the random process only requires the two adjacent
discrete-time samples bounding the point. In this case, f(d)
can be interpreted as the total mean square error over the
length d interval bounded by two consecutive sensing epochs
[4]. Optimizing the overall sensing performance is equivalent
to minimizing the total mean square error of the linear MMSE
over the whole sensing period.

For a clear exposition of the result, we assume that two
samples at time 0 and time T are available at the sensor for
free, i.e., no energy is used for collecting those two samples.
Denote these two sampling epochs as l0 = 0, lNT+1 = T .
Besides, there are NT sensing epochs placed over (0, T ). The
overall sensing performance over the duration [0, T ] is then a
summation of f(dn), n = 1, 2, . . . , NT + 1.

C. Problem Formulation

Our objective is to design an online sensing policy {ln},
such that the expected long-term average sensing utility is
optimized, subject to the energy constraint at every time
instant. The optimization problem is formulated as

min
{ln}

lim sup
T→+∞

E

[
1

T

NT+1∑
n=1

f(dn)

]
(3)

s.t. (1)− (2)

where the expectation in the objective function is taken over all
possible energy harvesting sample paths. This is a stochastic
optimization problem, and in general is hard to obtain a closed-
form optimal solution.

III. SENSING SCHEDULING WITH INFINITE BATTERY

In [4], we studied the optimal sensing scheduling policy
for a similar energy harvesting sensing system under infinite
battery constraint. We showed that the sensing performance
(i.e., time-average MSE) has a lower bound, which can be
achieved by a best-effort sensing scheduling policy. For the
sake of completeness, we adapt and include the lower bound
and the corresponding sensing scheduling policy below with-
out providing the proofs.

Lemma 1 The objective function in (3) is lower bounded as

min
{ln}

lim sup
T→+∞

E

[
1

T

NT+1∑
n=1

f(dn)

]
≥ f (1) (4)

Definition 1 (Best-effort Sensing Scheduling) The sensor is
scheduled to perform the sensing task at sn = n, n = 1, 2, . . ..
The sensor performs the sensing task at sn if E(s−n ) ≥ 1;
Otherwise, the sensor keeps silent until the next scheduled
sensing epoch.
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Here we use sn to denote the n-th scheduled sensing epoch,
which is in general different from the actual sensing epoch ln
since some of the scheduled sensing epochs may be infeasible.

Theorem 1 The best-effort sensing scheduling policy is opti-
mal when the battery size is infinite, i.e.,

lim inf
T→+∞

1

T

NT+1∑
n=1

f(dn) = f (1) a.s.

where dn is the duration between the actual sensing epochs
ln and ln−1.

Theorem 1 indicates that for almost every energy harvesting
sample path, the best-effort sampling policy converges to the
lower bound in Lemma 1 when the battery size is infinite.
This is due to the fact that when the battery size is infinite, the
fluctuations of the energy arrivals can be averaged out when
time is sufficiently large, thus a uniform sensing scheme with
sensing rate equal to the energy harvesting rate is optimal.
However, with finite battery, the best-effort sampling scheme
may not achieve the lower bound, since energy overflow is
inevitable in this situation, which in turn results in more
frequent infeasible sensing epochs due to battery outage.

IV. SENSING SCHEDULING WITH FINITE BATTERY

In order to optimize the sensing performance when the
battery size is finite, intuitively, the sensing policy should
try to prevent any battery overflow, as wasted energy leads
to performance degradation. Meanwhile, the properties of the
sensing performance function requires the sensing epochs to be
as uniform as possible. Those two objectives are not aligned
with each other, thus, the optimal scheduling policy should
strike a balance between them.

In the following, we propose an energy-aware adaptive sens-
ing scheme. Different from the best-effort sensing scheduling
policy which schedules the sensing epochs uniformly, the
proposed sensing policy adaptively changes its sensing rate
based on the instantaneous battery level. Intuitively, when the
battery level is high, the sensor should sense more frequently
in order to prevent battery overflow; When the battery level is
low, the sensor should sense less frequently to avoid infeasible
sensing epochs. Meanwhile, the sensing rate should not vary
significantly so that a relatively uniform sensing scheduling
can be achieved.

Definition 2 (Energy-aware Adaptive Sensing Scheduling)
Define β := k logB

B where k is a positive number such that
0 < β < 1. The adaptive sensing scheduling policy defines
sensing epochs sn recursively as follows

sn = sn−1 +


1

1−β E(s−n−1) < B
2

1 E(s−n−1) = B
2

1
1+β E(s−n−1) > B

2

(5)

where s0 = 0, E(s−0 ) = 1. The sensor performs the sensing
task at sn if E(s−n ) ≥ 1; Otherwise, the sensor keeps silent
until the next scheduled sensing epoch.

The policy divides the battery state space into three different
regimes. At each scheduled sensing epoch, the sensor decides
whether to sense based on its current battery state, and
adaptively selects the next sensing epoch depending on which
regime the current battery state falls in. When it is above
B/2, the sensor senses every 1

1+β units of time, and when
it is below B/2, it senses every 1

1−β units of time. The value
of β controls the deviation of the sensing rates. Intuitively,
when the value of β increases, the probability that the battery
overflows decreases, so does the probability that a scheduled
sensing epoch is infeasible. However, larger β may also lead
to larger deviations of the durations between sensing epochs,
which results in sensing performance degradation.

The performances of the adaptive sensing scheme is char-
acterized analytically in the following two theorems.

Theorem 2 Under the adaptive sensing scheduling policy,
the probability that a scheduled sensing epoch is infeasible
scales in O

(
2k+1k(logB)2

Bk+1

)
, and the average amount of wasted

energy per unit time scales in O
(

2k+1k(logB)2

Bk+1

)
.

Theorem 2 indicates that when B is sufficiently large, both
upper bounds of the battery outage probability and the over-
flow probability decrease monotonically as k increase. As
the battery size B increases, the upper bounds of those two
probabilities decrease and eventually approaches zero.

Theorem 3 Under the adaptive sensing scheduling policy, the
gap between the time average sensing performance and the

lower bound f(1) scales in O
(

2k+1k(logB)2

Bk+1 +
(

logB
B

)2)
.

Theorem 3 implies that as battery size B increases, the sensing
performance under the adaptive sensing scheduling policy
approaches the lower bound achievable for the system with
infinite battery. Thus, it is asymptotically optimal. Compared
to the bounds in Theorem 2, the bound in Theorem 3 has an
extra term

(
logB
B

)2
. For a sufficiently large B, the bound

is dominated by the first term when k is small, and it is
dominated by the second term when k is large. Thus, it may
not monotonically decrease as k increase, which is consistent
with the fact that the sensing performance is not only related to
the battery outage and overflow probabilities, but also depends
on the durations between consecutive sensing epochs.

The proofs of Theorems 2 and 3 are provided in the Ap-
pendix. The sketch of the proof is as follows. The battery states
at scheduled sensing epochs form a discrete-time random
process {E(s−n )}∞n=1. However, it differs from a conventional
discrete-time random process since the durations between two
consecutive time indices vary in time: it could be 1

1−β , 1
1−β or

1 depending on the battery state. This makes the analysis very
complicated. To simplify the analysis, we consider the portion
of {E(s−n )}∞n=1 lying in (0, B/2] and [B/2, B) separately.
The portion lying in each region can be mapped to a random
process with uniformly spaced time indices. We characterize
the expected time durations that the random process hits its
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boundaries for the first time, whose inverse indicates the
corresponding battery overflow or outage rates. Theorem 3
can be proved based on such characterization and properties
of the sensing performance function f(d).

V. SIMULATION RESULTS

We evaluate the performance of the proposed sampling
policy through simulations. Fixing the energy harvesting rate
to be λ = 1 unit energy per unit time, and T = 100, 000,
we generate a sample path for the Poisson energy harvesting
process, and perform the proposed adaptive sensing scheduling
policy. We adopt the MSE function for random process recon-
struction in [4] to measure the sensing performance under the
proposed sensing scheme. Specifically, the correlation between
two samples separated by a time duration d is ρd, and the
average reconstruction MSE of the random field between two
d-spaced samples is

f(d) = d
1 + ρ2d

1− ρ2d
+

1

log ρ
(6)

In the simulation, we use ρ = 0.7.
We keep track of the following quantities. First, we count

the total number of sensing epochs under the policy, denoted
as NT . Among those NT sensing epochs, we count the
total number of infeasible ones (i.e., the epoch sn when
E(s−n ) < 1), and divide it by NT . This gives us the ratio
of infeasible sensing epochs to all scheduled sensing epochs
under the policy. We let k = 0, 1, 2, respectively, and perform
the adaptive sensing according to (5) with battery size B
varying from 2 to 100. The corresponding results are plotted in
Fig. 1. We note that for each fixed k, the ratio monotonically
decreases as B increase, and each curve is roughly convex in
B. This is consistent with the theoretical bounds in Theorem 2.
Meanwhile, for each fixed battery size, the ratio decreases as
k increases. This is due to the fact that the adaptive sensing
policy is more conservative for larger k when battery level is
below B/2, i.e., it senses at a slower rate for larger k, which
makes the energy level drift away from empty state with higher
probability.

Next, we study battery overflow under the proposed policy.
We count the total number of time instants when the battery
state exceeds B, and divide it by T . The average number of
battery overflow events per unit time is plotted as a function of
B in Fig. 2 for k = 0, 1, 2, respectively. Again, we observe that
for each fixed k, the curve is monotonically decreasing and
roughly convex in B, as predicted by the theoretical bounds in
Theorem 2. Meanwhile, for each fixed battery size, the battery
overflow rate decreases as k increases. This is due to the fact
that the adaptive sensing policy is more aggressive for larger
k when battery level is above B/2, i.e., it senses at a faster
rate for larger k. Thus, the energy level drifts away from full
state with higher probability.

At last, we study the sensing performance in terms of the
time-average MSE. We calculate the MSE for each interval
bounded by two consecutive sensing epochs as (6), aggregate
them and divide the sum by T . The time-average MSE is
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Fig. 1: The ratio of infeasible sensing epochs.
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Fig. 2: The average number of battery overflow per unit time.

plotted in Fig. 3. We note that for each fixed k, the gap
between the time-average MSE and the lower bound monoton-
ically decreases as B increases, which is consistent with the
theoretical result in Theorem 3. However, when B is fixed,
the best sensing performance is observed at k = 1, which is
different from the results in Fig. 1 and Fig. 2. Even though the
battery outage and overflow rates decrease in k, the average
sensing performance does not exhibit such monotonicity. This
is because when k is large, the sensing rate varies dramatically
in time. Although this leads to lower outage and overflow
probabilities, it compromises the sensing performance as the
sensing scheduling deviates from the desired uniform sensing
scheduling. Thus, there exists a tradeoff between reducing
battery outage and overflow probabilities, and equalizing the
sensing rates in time. The optimal selection of k should jointly
consider those two conflicting objectives.

VI. CONCLUSIONS

In this paper, we considered the optimal online sensing
scheduling policy for an energy harvesting sensing system
with a finite battery. We first provided a lower bound on the
long-term average sensing performance for the system without
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Fig. 3: The time-average sensing MSE.

the finite battery constraint. We then proposed an energy-
aware adaptive sensing scheduling policy, which dynamically
varies the sensing rate based on instantaneous energy levels
of the battery. We showed that the battery outage and over-
flow probabilities under the proposed policy approach zero
as battery size goes to infinity, and the long-term average
sensing performance converges to the lower bound. Thus the
adaptive sensing scheduling policy is asymptotically optimal.
The convergence rates as a function of the battery size were
also explicitly characterized. Simulation results validated the
theoretical bounds.

APPENDIX

The proofs to Theorems 2 and 3 are provided here. Our
approach can be sketched as follows: In Appendix A, we
construct a “virtual” energy harvesting sensing system, whose
battery state can be any integer in (−∞,+∞). Assuming
the virtual sensing system senses at a uniform rate, we
analytically characterize the expected duration between two
consecutive events that the virtual battery state hits a certain
level. In Appendix B, we show that how the original sensing
system with a finite battery can be mapped to the virtual
system, and exploit the analytical results in Appendix A to
prove Theorem 2. In Appendix C, we use the results from
Appendix B to prove Theorem 3.

A. A Virtual Energy Harvesting Sensing System

Consider an energy harvesting sensing system with a virtual
battery whose state can be any integer in (−∞,+∞). It senses
every 1

1−β units of time, even if the battery state is zero or
negative. The energy arrives at the virtual battery according to
a Poisson process with parameter 1. Each sensing operation
consumes one unit of energy. We use Eβ(n) to denote the
battery state right before the n-th sensing epoch, i.e., at time
n

1−β . Assume the system starts with initial energy level x,

then, the battery status evolves according to

Eβ(0) = x (7)

Eβ(n) = Eβ(n− 1) +A

(
1

1− β

)
− 1, n = 1, 2, . . . (8)

where A
(

1
1−β

)
is a Poisson random variable with parameter

1
1−β . Thus,

E[Eβ(n)] = x+
β

1− β
n (9)

Therefore, when 0 < β < 1, the energy level drifts up in
expectation; Otherwise, when β < 0, it drifts down.

Define

Λβ(α) := logE
[
e−α(A( 1

1−β )−1)
]

=
e−α − 1

1− β
+ α (10)

We note that Λβ(α) is convex in α, Λβ(0) = 0, and Λ′β(α) =

− e−α

1−β +1. Thus, equation Λβ(α) = 0 has another root besides
0, denoted as α0. We have

e−α0 − 1

1− β
+ α0 = 0, Λ′β(0) = − β

1− β
(11)

When α0 is sufficiently small, we have β = α0

2 + o(α0).

Assume x ∈ (0,M), where M is a positive integer. We are
interested in the event that the random process {Eβ(n)}∞n=0

hits or exceeds one of the two boundary levels 0 and M for
the first time. We have the following observations.

Lemma 2 Consider the random process {Eβ(n)}∞n=0 defined
in (7)-(8). Let κ be the smallest n such that Eβ(n) ≥ M or
Eβ(n) = 0, and τx := E[κ]. Define Px,M as the probability
that Eβ(κ) ≥M , and Px,0 as the probability that Eβ(κ) = 0.
Then,

Px,M =
1− e−α0x

1− e−α0(M+θx)
(12)

Px,0 =
e−α0x − e−α0(M+θx)

1− e−α0(M+θx)
(13)

τx =
1− β
β

((M + φx)Px,M − x) (14)

where 0 ≤ θx ≤ 1
1−β , 0 ≤ φx ≤ 1

1−β .

Lemma 3 Consider the random process {Eβ(n)}∞n=0 defined
in (7)-(8). Define S−x,M as the expected time index n when

{Eβ(n)}∞n=0 with α0 = −k logM
M +o

(
logM
M

)
< 0 hits bound-

ary level M for the first time, and S+
x,0 as the expected time

index n when {Eβ(n)}∞n=0 with α0 = k logM
M +o

(
logM
M

)
> 0

hits boundary level M for the first time. Then, S−M,M =

Ω
(

Mk+1

k(logM)2

)
, S+

0,0 = Ω
(

Mk+1

k(logM)2

)
.

The proofs of Lemmas 2 and 3 are omitted due to space
limitations.
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B. Proof of Theorem 2

Now consider the energy state evolution process
{E(s−n )}∞n=1 under the proposed adaptive sensing scheduling
policy. We focus on the portion of the random process lying
in range [0, B/2) and (B/2, B], respectively. Comparing
the random process {E(s−n )}∞n=1 with the virtual battery
evolution process defined in (7)-(8), we note that each
portion can be treated as part of {Eβ(n)}∞n=0 lying in
the corresponding range. Therefore, the characterization of
{Eβ(n)}∞n=0 in Lemma 2 and Lemma 3 can be slightly
modified to characterize {E(s−n )}∞n=1.

Specifically, for the portion lying in [0, B/2), we let
M = B/2, β = k logB

B > 0, then, the expected number of
epochs between two consecutive battery outage events, i.e.,
E(s−n ) = 0, can be bounded below by S+

0,0. Thus, based on
law of large numbers, the probability that a sensing epoch is
infeasible is bounded above by 1/S+

0,0. Therefore, it scales in

O
(

2k+1k(logB)2

Bk+1

)
.

Similarly, for the portion lying in [B/2, B), we map B →
M , B/2 → 0, β = −k logB

B < 0, then, the expected number
of epochs between two consecutive battery overflow events,
i.e., E(s−n ) = B, can be bounded below by S−M,M . Again,
based on law of large numbers, the rate of battery overflow
scales in O

(
2k+1k(logB)2

Bk+1

)
. Due to the properties of Poisson

process, we can show that the amount of wasted energy per
unit time is bounded by twice of the battery overflow rate,
thus it scales in the same order.

C. Proof of Theorem 3

Consider the first n scheduled sensing epochs under the
proposed adaptive sensing scheduling policy. Let n+ denote
the number of intervals between two scheduled sensing epochs
with duration 1

1−β , n− be that with duration 1
1+β , and n0 be

that with duration 1. Let n̄ be the number of sensing epochs the
battery overflows, and n be the number of infeasible sensing
epochs. Then, the n-th scheduled sensing epoch happens at
time Tn := n+

1−β + n0 + n−
1+β . Let A+

n be the total amount of
energy wasted. Then,

E(S−n ) = (A(Tn)−A+
n )− (n− n) (15)

where A(Tn) is a Poisson random variable with parameter
Tn. Dividing both sides by n and taking the limit as n goes
to +∞, we have

lim
n→∞

E(n)

n
= lim
n→∞

A(Tn)

Tn
· Tn
n
− lim
n→∞

A+
n

n
−
(

1− lim
n→∞

n

n

)
Therefore,

lim
n→∞

Tn
n

= 1 +O

(
2k+1k(logB)2

Bk+1

)
(16)

Based on Taylor expansion and (16), we have

lim
n→∞

n+f
(

1
1−β

)
+ n0f(1) + n−f

(
1

1+β

)
Tn

= f(1) +O

(
2k+1k(logB)2

Bk+1
+

(
logB

B

)2
)

On the other hand, due to the existence of infeasible sensing
epochs, we have

lim
n→∞

∑
n f(dn)−

[
n+f

(
1

1−β

)
+ n0f(1) + n−f

(
1

1+β

)]
Tn

≤ lim
n→∞

∑
dn:dn≥ 1

1−β
f(dn)

Tn
(17)

≤ lim
n→∞

∑
dn:dn≥ 1

1−β
Cdn

Tn
(18)

≤ lim
n→∞

2Cn

Tn
= O

(
2k+1k(logB)2

Bk+1

)
(19)

where (17) follows from the fact that the difference between
the actual sensing performance and scheduled sensing perfor-
mance is due to the infeasible sensing epochs. (18) follows
from the property of f(d), and (19) follows from Theorem 2
and (16). Thus,

lim
n→∞

∑
n f(dn)

Tn
= f(1) +O

(
2k+1k(logB)2

Bk+1
+

(
logB

B

)2
)
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