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Abstract—We investigate the problem of minimizing the overall
transmission delay of data packets in a single-user wireless
communication system, where the transmitter has a fixed amount
of energy to transmit all of the data packets. We consider two
different scenarios. In the first scenario, we assume that packets
arrive randomly at the transmitter. We propose two different
approaches to solve this problem. First, we develop an iterative
algorithm that allocates the total energy of the transmitter to its
individual packets, in a way to minimize the total delay. As a sec-
ond approach, we develop a dynamic programming formulation
for the problem. In the second scenario, we assume that all of the
packets have already arrived before the transmission starts. In
this situation, the cost function has a fixed form, and is convex
and differentiable. In this scenario, the iterative algorithm we
develop is guaranteed to converge to the unique global optimal
solution.

I. INTRODUCTION

For many wireless networks, especially for sensor and
mobile ad-hoc networks, efficient consumption of energy is a
critical issue, since energy is severely limited in such networks,
and is even non-renewable in some cases. Consequently, a
plethora of energy efficient methods and algorithms have
been developed under various system settings and for various
optimality criteria.

Reference [1] considers the problem of minimizing the
energy used in transmitting packets in a single-user system
subject to a deadline by which all packets must be transmitted.
It develops an algorithm, coined lazy scheduling algorithm,
where the transmission time of each packet is increased
as much as possible, subject to the deadline and causality
constraints (i.e., all packets must be transmitted by a deadline
and a packet may not be transmitted before it arrives), in order
to minimize the total energy consumed in transmitting the
packets. In [2], the authors extend the single-user problem
to a multi-user case and develop an iterative algorithm. The
algorithm is named MoveRight where at any iteration only
two consecutive packets are considered, and the starting points
of the transmission of the two packets are moved to the
right (hence the name). The authors prove that this algorithm
converges to the optimal scheduling of the packets that mini-
mizes the total energy. In [3], the authors extend their energy-
minimizing approaches to wider scenarios, such as multiple-
access and broadcast channels, and to channels with fading.
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Dynamic programming (DP) is another approach which
has been broadly adopted in wireless optimal power/energy
allocation problems. In [4], the authors use DP to jointly op-
timize the long-term average transmission power and average
buffer delay. Reference [5] proposes a DP formulation to find
optimal power, channel coding and source coding policies with
a delay constraint. Reference [6] uses DP to maximize the K-
block constrained capacity through adaptively allocating power
across blocks according to the varying channel condition.
Reference [7] uses DP to calculate the optimal power/rate
control policies to minimize the average delay under an
average power constraint. Reference [8] uses DP to solve the
problem of maximizing the data throughput for an energy- and
deadline-constrained transmitter over a fading channel.

In this paper, we consider the “dual” of the problem
considered in [1]. For a single-user system, our objective is
to minimize the overall delay of the packets subject to an
energy constraint on the transmitter. The delay includes both
the queuing time and the transmission time for the packet. Our
aim is to allocate the total energy over all packets in a way
to minimize the overall delay of the system. We investigate
two different settings. In the first setting, we assume that the
packets arrive randomly during the transmissions, while in
the second setting, we assume that all of the packets have
arrived and are ready for transmission before the transmission
starts. We formulate both problems as convex minimization
problems. However, we see that there are important structural
differences between the two problems.

In the first setting, even though the overall cost function
is convex in the energies allocated to the packets, it is not
differentiable. The reason for this is that the cost function
takes different forms in different regions of allowable energy
distributions. In other words, the energy allocated to a packet
affects the form of the cost function for later packets. In
the second setting, the cost function is convex, has a fixed
form, and is differentiable. For the first setting, unlike [1],
our problem does not admit a closed-form solution. There-
fore, we develop an iterative algorithm that is based on the
principle of decreasing the overall delay at each iteration. We
prove that the proposed algorithm decreases the overall delay
monotonically. However, due to the non-differentiability of the
overall delay function, the proposed algorithm may converge
to a suboptimal fixed point. In order to overcome this problem,
we use two modifications on our algorithm: increasing the
dimensionality of the sub-problem solved at each iteration
(i.e., considering more than two packets at any given iteration),
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Fig. 1. System model with random packet arrivals.

and ε-perturbation of the sub-optimal fixed points. In addition,
we develop a DP based formulation for the same problem.
For the second setting, we formulate the standard Lagrangian
based approach, and also develop an iterative algorithm. Since
the cost function has a fixed form and is differentiable, the
iterative algorithm is guaranteed to converge to the unique
global optimum solution.

II. SCENARIO I: RANDOM PACKET ARRIVALS

We consider a non-fading single-user wireless channel. We
assume that M packets arrive at the transmitter randomly at
times t1, t2, . . . , tM , where the inter-arrival times are denoted
as d1, d2, . . . , dM−1; see Fig. 1. The transmitter has a total
energy constraint which is denoted by E. Let ei denote
the energy allocated for the transmission of packet i, then∑M

i=1 ei ≤ E. Since the channel is non-fading, we can express
the relationship between the transmission duration of τi and
the energy spent in its transmission ei, for packet i, as a
deterministic function τi = f(ei). Without loss of generality,
as in [1], [3], we assume that f(e) satisfies the following
properties: i) f(e) ≥ 0, ii) f(e) decreases monotonically in
e, iii) f(e) is strictly convex in e, iv) f(e) is continuously
differentiable, and v) f(e) → ∞ as e → 0. As shown in [1],
[3], the first four conditions are satisfied in realistic channel
coding schemes. The last condition is reasonable as a packet
cannot be transmitted with zero energy.

Let Di denote the delay experienced by the i-th packet,
which includes the waiting time in the queue and the trans-
mission time. Then, the delay experienced by each packet can
be written recursively as,

D1 = f(e1)
D2 = (D1 − d1)+ + f(e2)
D3 = (D2 − d2)+ + f(e3)

...
DM = (DM−1 − dM−1)+ + f(eM ) (1)

where (x)+ = max(0, x). Here, for the ith packet, (Di−1 −
di−1)+ denotes the waiting time in the queue, and f(ei)
denotes the actual transmission time. Then, we can express
our optimization problem as

min
M∑

i=1

Di

s.t.
M∑

i=1

ei ≤ E

ei ≥ 0, i = 1, 2, . . . , M (2)

where the parameters of the optimization are the energies allo-
cated to all packets, {ei}M

i=1, and the givens of the optimization

problem are the total energy E and the inter-arrival times of
the packets {di}M

i=1.
Intuitively, the optimization problem in (2) is a convex

optimization problem since function f(ei) is convex and a
linear combination of convex functions is convex. However,
the existence of (·)+ function complicates matters, and the
joint convexity of the cost function with respect to all ei, i.e.,
with respect to e = [e1 e2 . . . eM ]> needs to be proved.

Theorem 1: The objective function in (2) is convex with
respect to e.

Proof: We will prove the convexity recursively. First, we
note that D1 = f(e1) and f(e1) is convex in e1. We also
note that D2 = (f(e1)− d1)

+ + f(e2) and the function
(f(e1)− d1)

+ is convex in e because of the convexity of the
function f(e1) in e1. Thus, D2 is convex in e also.

Then, we look at D3 =
(
(f(e1)− d1)

+ + f(e2)− d2

)+

+

f(e3). We let F (e) = (f(e1)− d1)
+ + f(e2) − d2. We note

that F (e) itself is convex in e, and we need to prove that
(F (e))+ is convex in e as well. Using the definition of (·)+,
for any two vectors e and e′ in the constraint set, we have

λF (e)+ + (1− λ)F (e′)+ ≥ λF (e) + (1− λ)F (e′)
≥ F (λe + (1− λ)e′) (3)

If F (λe + (1− λ)e′) is positive, we have

λF (e)+ + (1− λ)F (e′)+ ≥ F (λe + (1− λ)e′)
= F (λe + (1− λ)e′)+ (4)

If F (λe+(1−λ)e′) is negative, then F (λe+(1−λ)e′)+ = 0.
Using the nonnegativity of the (·)+ function, we have

λF (e)+ + (1− λ)F (e′)+ ≥ 0
= F (λe + (1− λ)e′)+ (5)

Therefore, using (4) and (5), we conclude that

λF (e)+ + (1− λ)F (e′)+ ≥ F (λe + (1− λ)e′)+ (6)

which implies that (F (e))+ is convex in e. Therefore, D3 is
convex in e as well.

The convexity of (Di − di)+ for i = 4, . . . , M − 1 can be
proved in a similar manner. Since the objective function can
be expressed as

M∑

i=1

Di =
M−1∑

i=1

(Di − di)+ +
M∑

i=1

f(ei) (7)

and since each term in the cost function is convex in e, the
linear combination is convex in e as well. ¤

Therefore, our problem is a convex minimization problem
which has a convex objective function and linear constraints.
However, there are two main difficulties in this optimization



problem. First, since the overall delay includes both the
queuing time and the transmission time of the packets, the
transmission time for a packet affects the queuing time of
all of the following packets. This causes the queuing time
of earlier packets to be multiply counted in the objective
function. This leads to the varying coefficients before f(ei)’s
in the cost function, which implies that the convexity of
f(·) alone will not provide us a closed-form solution; we
note that the convexity of the cost function alone provided
a closed-form solution in [1] due to the symmetry in the cost
function. Secondly, because of the existence of (·)+ function
in the overall delay expression, the cost function has non-
differentiable points. In addition, depending on whether the
insides of (·)+ functions are negative or positive, we have 2M

possible cost functions. Since the number of different cost
functions to consider grows exponentially with the number
of packets, standard Lagrangian method is not tractable here.
In the following, we will use a simple 3-packet problem
to illustrate the difficulties involved in solving this convex
optimization problem.

Using the definition of Di in (1), the 3-packet problem is

min f(e1) + (f (e1)− d1)
+ + f(e2) +(

(f (e1)− d1)
+ + f(e2)− d2

)+

+ f(e3)

s.t. e1 + e2 + e3 ≤ E, e1, e2, e3 ≥ 0 (8)

Opening the parentheses, we have four different possible cases:
Case 1: Both the transmission of the first and second packets

end before the arrival of the next packet, i.e., insides of both
(·)+ functions are negative. This case is illustrated in Fig. 2.
In this case, we have

min f(e1) + f(e2) + f(e3)
s.t. f(e1) ≤ d1, f(e2) ≤ d2

e1 + e2 + e3 ≤ E, e1, e2, e3 ≥ 0 (9)

Case 2: The transmission of the first packet ends after the
arrival of the second packet, while the transmission of the
second packet ends before the arrival of the third packet. This
case is illustrated in Fig. 3. In this case, we have

min 2f(e1) + f(e2) + f(e3)− d1

s.t. f(e1) > d1, f(e1) + f(e2) ≤ d1 + d2

e1 + e2 + e3 ≤ E, e1, e2, e3 ≥ 0 (10)

Case 3: The transmission of the first packet ends before
the arrival of the second packet, while the transmission of the
second packet ends after the arrival of the third packet. This
case is illustrated in Fig. 4. In this case, we have

min f(e1) + 2f(e2) + f(e3)− d2

s.t. f(e1) ≤ d1, f(e2) > d2

e1 + e2 + e3 ≤ E, e1, e2, e3 ≥ 0 (11)

Case 4: The transmissions of both the first and the second
packets end after the arrival of the next packet. This case is
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illustrated in Fig. 5. In this case, we have

min 3f(e1) + 2f(e2) + f(e3)− 2d1 − d2

s.t. f(e1) > d1, f(e1) + f(e2) > d1 + d2

e1 + e2 + e3 ≤ E, e1, e2, e3 ≥ 0 (12)

As we see, the sub-problems in (9), (10), (11) and (12) are
similar in structure, except for different coefficients in front
of the transmission delay times, f(ei), in the cost function.
In addition, each problem has a different constraint set, which
are all convex due to the monotonicity of f(ei) in ei. In order
to solve the optimization problem in (8), we need to solve the
four optimization problems in (9), (10), (11) and (12), and take
the solution that gives us the smallest cost function, i.e., overall
delay. Even though each problem is differentiable and convex,
the number of problems to be solved increases exponentially
with the number of packets, making this approach intractable
for practical scenarios with many packet arrivals.

A. An Iterative Approach

Because of the intractability of the global problem, in this
section, we consider developing an iterative algorithm, which
at any given iteration, considers a smaller local sub-problem.
Similar to the FlowRight algorithm developed in [3], in this
section, we consider optimizing two of the variables, the
energies allocated to two consecutive packets, at any iteration,
when the rest of the variables, the energies allocated to the
rest of the packets, are fixed.

Initially, we allocate the total energy E to the first packet.
Then, we consider the first two packets, and optimize the
distribution of the total energy E over these two packets,
in a way to minimize the overall delay, while we keep the
energies allocated to the rest of the packets fixed. We continue
this process until we reach the last packet, then we return to
the first packet. We express the local optimization problem in
terms of the energies of two consecutive packets, as follows

min
M∑

j=i

Dj(ek
i , ek

i+1)

s.t. ek
i + ek

i+1 = ek−1
i + ek−1

i+1 , ek
i , ek

i+1 ≥ 0 (13)

where ek−1
i and ek−1

i+1 denote the energies of the packets in the
previous iteration. This problem can be solved relatively easily
as it essentially is a single-variable optimization problem.

It is easy to prove that this algorithm converges to a fixed
point, since the algorithm monotonically decreases the cost
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function which is lower bounded by zero. If the objective
function was twice-differentiable, we could be sure that the
algorithm converges to the globally optimum solution. Since
our cost function is not differentiable at some points, the
algorithm may converge to a strictly sub-optimal fixed point.
Reference [9] proposes two approaches to solve the difficulty
introduced by non-differentiability in network flow prob-
lems: “multiple node relaxation method”, and “ε-relaxation
method”. We adopt these two methods here in order to escape
sub-optimal fixed points. Following multiple node relaxation
method, we consider sub-problems involving three or more
packets, as opposed to two packets as we have done above.
Similarly, following the ε-relaxation method, we move a small
amount of energy from one packet to another to perturb a sub-
optimal fixed point. Experimentally, we have observed that
both methods improve the convergence of the algorithm.

B. A Dynamic Programming Approach
In this section, we develop a DP approach to our delay

minimization problem. In particular, we partition the problem
into M stages, and define the state space to be E ×A, where
E includes the possible amounts of energy remaining at the
current stage and A is the set of possible queuing times
associated with the packet. Specifically, in stage n, we define
Sn(e, a) to be the minimal delay for the last M − n packets,
given the total energy remaining is e and the waiting time in
the queue for the n-th packet is a, as shown in Fig. 6. Then,
we have the following recursive relationship

Sn(e, a) = min
0≤en≤e

{a + f(en)

+Sn+1

(
e− en, (a + f(en)− dn)+

)}
(14)

for n = 1, 2, . . . , M − 1, and SM+1(e, a) = 0.
During the process of solving the recursive equations back-

wards, we keep track of en that leads to the minimum
value. Let us denote the minimizing values as ên(e, a) for
n = 1, 2, . . . , N .

After computing the functions {Sn(e, a), 0 ≤ e ≤ E} in
a backward recursion and obtaining the ên(e, a), we get the
optimal energy allocation strategy as e1 = ê1(E, 0). For n =
2, . . . , N ,

an = (an−1 + f(en−1)− dn−1)
+

en = ên

(
E −

n−1∑

i=1

ei, ai

)
(15)

dn. . . . . .

f(en)
. . .
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. . .
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Fig. 6. System model for the dynamic programming approach.

Since getting a closed form solution for the recursive
equations appears to be intractable, we perform numerical
approximation instead. To this end, we quantize the state space
into a finite number of discrete states. The step size of the
quantization decides the size of the state space. Specifically,
if there are N levels for the energy and J levels for the
waiting time, for each packet we have N · J different states.
The number of evaluations of a + f(en) + Sn+1[e− en, (a +
f(en) − dn)+] is once per quantized en for each quantized
state for each stage. Thus, the number of basic evaluations is
N2JM , and the number of calculations grows linearly with
the total number of packets M . We note that we can use the DP
approach for more general cases where the packet arrivals are
modeled as a random process, and the delays are calculated as
expectations. In addition, we can incorporate the fading nature
of the wireless channel, as well as develop online algorithms.

III. SCENARIO II: PACKETS READY BEFORE
TRANSMISSION STARTS

In many situations, such as multimedia communications,
the source (video, music, etc.) may be available at the server
waiting to be downloaded to their destinations. In sensor
networks, a node may have gathered a number of packets
before the transmission starts. In these scenarios, minimizing
the overall transmission delay with a given amount of energy
is also an important problem.

We assume that there are M packets available at the
transmitter at t = 0; see Fig. 7. Therefore, for the i-th packet,
the delay Di can be expressed as

Di =
i∑

k=1

τk =
i∑

k=1

f(ek) (16)

Then, our optimization problem becomes

min
M∑

i=1

(M − i + 1)f(ei)

s.t.
M∑

i=1

ei ≤ E

ei ≥ 0, i = 1, . . . , M (17)

We note that, since all the packets have arrived before
the transmission starts, the cost function has a fixed form,
and we do not need to use the (·)+ function. This makes
the optimization problem tractable. The problem in (17) is a
convex optimization problem, and there exists a unique global
optimum solution that satisfies the KKT optimality conditions.

We note that because of property v) of f(e), no ei can be
zero, as it would require the cost function to go to infinity. As
a result, the KKTs can be expressed as

(M − i + 1)f ′(ei) + λ = 0 (18)
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Fig. 7. System model when all packets are ready before the transmission
starts.

i.e., as

ei = f ′−1

( −λ

M − i + 1

)
, i = 1, 2, . . . , M (19)

where λ is the non-negative Lagrange multiplier which is
chosen such that

∑i
k=1 ek = E.

In the following, we also devise an iterative algorithm to
solve this problem. Following the procedure described in the
previous section, considering two variables at a time, the local
optimization in the k-th iteration becomes

min (M − i + 1)f(ek
i ) + (M − i)f(ek

i+1)

s.t. ek
i + ek

i+1 = ek−1
i + ek−1

i+1 , ek
i , ek

i+1 ≥ 0 (20)

Following a similar analysis as before, we know that ek con-
verges to a fixed point, ē, as the cost function is monotonically
decreasing and is lower bounded. We need to show that ē is
the solution to (17). From the KKTs of the local optimization,
we have

Mf ′(ē1) = (M − 1)f ′(ē2) = . . . = f ′(ēM ) (21)

We also have
∑M

i=1 ēi = E. Therefore, ē satisfies the global
KKT conditions in (18) and is the globally optimal point.

Based on the properties of f(e), we know that f ′(e) is
negative and monotonically increasing in e. From (21), we
have f ′(ē1) > f ′(ē2) > . . . > f ′(ēM ). Therefore, at the
optimal point, the energy spent for each packet monotonically
decreases in the order of transmission. Thus, earlier packets
are assigned larger energies and therefore, are transmitted
quicker than the later ones. Therefore, this model for the delay
minimization problem yields a solution which is in contrast
with the principle of lazy scheduling that the model in [1]
resulted in.

IV. SIMULATION RESULTS

We generate a short sequence of packets, with inter-arrival
times d = [1 0.5 1.5 1.75]. The first packet arrives at
time t = 0. We choose a simple function to use in our
simulations: f(e) = 1/e, which satisfies all of the stated prop-
erties for f(e). We use five algorithms, including our iterative
algorithm, the versions of it with dimension relaxation, and ε-
perturbation methods, DP based algorithm and built-in Matlab
optimization functions.

Simulation results indicate that DP based algorithm always
converges to the solution that the built-in Matlab function
finds. In Fig. 8, we observe that our iterative algorithm
converges to the solution the built-in Matlab function finds.
However, in Fig. 9, we observe that there is a gap between
the convergence point of our iterative algorithm and the
Matlab solution. We note that, at the point that our algorithm
converges to, the departure time of the third packet coincides
with the arrival time of the fourth packet. This means that
our algorithm converges to a non-differentiable sub-optimal
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Fig. 8. Overall delay as a function of the iteration index, when E = 4.8.
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Fig. 9. Overall delay as a function of the iteration index, when E = 4.5

fixed point. When we apply dimension-3 relaxation and ε-
perturbation methods, we observe that the modified version
of our algorithm escapes the sub-optimal fixed point and
converges to the optimal solution.
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