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Abstract—Wireless systems comprised of rechargeable nodes
have a significantly prolonged lifetime and are sustainable. A
distinct characteristic of these systems is the fact that the
nodes can harvest energy throughout the duration in which
communication takes place. As such, transmission policies of
the nodes need to adapt to these harvested energy arrivals.
In this paper, we consider optimization of the transmission
policy of an energy harvesting transmitter which has a limited
battery capacity, communicating in a wireless fading channel. In
particular, we identify the optimal offline transmission policies
that maximize the number of bits delivered by a deadline, and
minimize the transmission completion time of the communication
session. We introduce a directional water-filling algorithm which
provides a simple and concise interpretation of the necessary
optimality conditions as well as energy storage capacity and
causality. We solve the throughput maximization problem for
the fading channel using the directional water-filling algorithm,
which simultaneously adapts to the energy harvested as well as
the channel variations in time. We then solve the transmission
completion time minimization problem by utilizing its equiva-
lence to its throughput maximization counterpart.

I. INTRODUCTION

This paper considers wireless communication using energy
harvesting transmitters. In such a scenario, incremental energy
is harvested by the transmitter during the course of data
transmission from random energy sources. As such, energy
becomes available for packet transmission at random times and
in random amounts. In addition, the wireless communication
channel fluctuates randomly due to fading. These together lead
to a need for designing new transmission strategies that can
best take advantage of and adapt to the random energy arrivals
as well as channel variations in time.

The simplest system model for which this setting leads to
new design insights is a wireless link with a rechargeable
transmitter, which we consider here. The incoming energy can
be stored in the battery of the rechargeable transmitter for
future use. However, this battery has finite storage capacity
and the transmitter needs to guarantee that there is always
sufficient battery space for each energy arrival, otherwise
incoming energy cannot be saved and will be wasted. In this
setting, we find the optimal transmission scheme that adapts
the instantaneous transmit power to the variations in the energy
and fade levels.

In this paper, we consider the offline optimization of the
energy harvesting transmitter, where we assume that the non-
causal information of energy arrivals and fading levels are

available at the transmitter. We consider two related opti-
mization problems. The first problem is the maximization of
the number of bits transmitted by a deadline T . The second
problem is the minimization of the time (or delay) by which
the transmission of B bits is completed. We first solve the
former in a static channel. The solution calls for a new al-
gorithm, termed directional water-filling. Taking into account
the causality constraints on the energy usage, the algorithm
allows energy flow only to the right, which is emphasized
by right permeable taps at each energy arrival point. This
algorithm serves as a building block for the fading case. We
show that a directional water-filling algorithm that adapts to
both energy arrivals and channel fade levels is optimal. Next,
we consider the second problem, i.e., the minimization of the
time by which transmission of B bits is completed. We solve
this second problem by mapping it to the first problem by
means of the maximum departure curve.

Related work includes the approaches on energy efficiency
and delay constraints which have received considerable at-
tention in the previous decade [1]–[4]. In [1], [2], energy
minimal packet scheduling is solved in a deterministic time
constrained system while in [3], long term average energy
minimal power control is found in a finite buffer system
governed by a continuous time Markov chain. In [4], optimal
energy allocation to a fixed number of time slots is derived
under time-varying channel gains and with offline and online
knowledge of the channel state at the transmitter. In [5],
energy management policies which stabilize the data queue
are proposed for single-user communication and under a linear
approximation, some delay optimality properties are derived.
In [6], throughput optimal energy allocation is studied for
energy harvesting systems in a time constrained slotted setting.
In [7], [8], minimization of transmission completion time is
considered in an energy harvesting system and the optimal
solution is obtained using a geometric framework. In [9],
energy harvesting transmitters with batteries of finite energy
storage capacity are considered and the problem of throughput
maximization by a deadline is solved in a static channel.

II. SYSTEM MODEL

We consider a single-user fading channel with additive
Gaussian noise as shown in Fig. 1. The transmitter has two
queues, a data queue, where data packets are stored; and an
energy queue, where the arriving (harvested) energy is stored.
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Fig. 1. Additive Gaussian fading channel with an energy harvesting
transmitter.

The energy queue, i.e., the battery, can store at most Emax

units of energy, which is used only for data transmission, i.e.,
energy required for processing is not considered.

The received signal y is given by

y =
√

hx + n (1)

where h is the (squared) fading coefficient, x is the channel
input, and n is a Gaussian random noise with zero-mean and
unit-variance. Whenever an input signal x is transmitted with
power p in an epoch of duration L, L

2 log (1 + hp) bits of
data is served out from the backlog with the cost of Lp units
of energy depletion from the energy queue. The bandwidth
is sufficiently wide so that L can take small values and we
approximate the slotted system to a continuous time system.
Hence, if at time t the transmit power of the signal is x2(t) =
p(t), the instantaneous rate r(t) in bits per channel use is

r(t) =
1
2

log (1 + h(t)p(t)) (2)

We assume that changes in the fading level and energy
arrivals occur in countable time instants, which are indexed
respectively as tf1 , tf2 , . . . and te1, t

e
2, . . . with the convention

that te1 = tf1 = 0. The fading level in [0, tf1 ) is h1, in [tf1 , tf2 )
is h2, and so on. Similarly, Ei units of energy arrives at time
tei , and E0 units of energy is available at time 0. We assume
that Ei ≤ Emax for all i. In the sequel, we will refer to a
change in the fading level or in the energy level as an event
and the time interval between two events as an epoch. This
model is depicted in Fig. 2. More precisely, epoch i is defined
as the time interval [ti, ti+1) where ti and ti+1 are the times
at which successive events occur and the length of the epoch
is Li = ti+1 − ti. The energy arrival and the channel fade
level information are non-causally available to the transmitter
before the transmission starts.

A power management policy is denoted as p(t) for t ∈
[0, T ]. There are two constraints on p(t), due to energy arrivals
at random times, and also due to finite battery storage capacity.
Since energy that has not arrived yet cannot be used at the
current time, there is a causality constraint on the power
management policy as:

∫ te
i

0

p(u)du ≤
i−1∑

j=0

Ej , ∀i (3)
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Fig. 2. The system model and epochs under channel fading.

where the limit of the integral tei should be interpreted as
tei − ε, for small enough ε. Moreover, due to the finite battery
storage capacity, we need to ensure that the energy level in
the battery never exceeds Emax at the times of energy arrivals.
Let d(t) = max{tei : tei ≤ t}. Then,

d(t)∑

j=0

Ej −
∫ t

0

p(u)du ≤ Emax, ∀t ∈ [0, T ] (4)

We emphasize that our system model is continuous rather
than slotted. In slotted models, e.g., [5], [6], the energy input-
output relationship is written for an entire slot. Such models
allow energies larger than Emax to enter the battery and be
used for transmission in a given single slot. Our continuous
system model prohibits such occurrences.

III. MAXIMIZING THROUGHPUT IN A STATIC CHANNEL

In this section, we consider maximizing the number of
bits delivered by a deadline T , in a non-fading channel with
offline knowledge of energy arrivals which occur at times
{t1, t2, . . . , tN} in amounts {E1, E2, . . . , EN}. The epoch
lengths are Li = ti − ti−1 for i = 1, . . . , N with t0 = 0,
and LN+1 = T − tN . There are a total of N +1 epochs. This
problem was solved in [8], [9] using a geometric framework.
Here, we provide an alternative algorithmic solution which
will serve as the building block for the solution for the fading
channel presented in the next section.

First, we note that the transmit power must be kept constant
in each epoch [7], [8], due to the concavity of rate in power.
Let us denote the power in epoch i by pi. The causality
constraints in (3) reduce to the following constraints on pi,

∑̀

i=1

Lipi ≤
`−1∑

i=0

Ei, ` = 1, . . . , N + 1 (5)

Moreover, since the energy level in the battery is the highest at
instants when energy arrives, the battery capacity constraints
in (4) reduce to a countable number of constraints, as follows

∑̀

i=0

Ei −
∑̀

i=1

Lipi ≤ Emax, ` = 1, . . . , N (6)

Note that since E0 > 0, there is no incentive to make pi = 0
for any i. Hence, pi > 0 is necessary for optimality.

The optimization is subject to causality constraints on the
harvested energy, and the finite storage constraint on the
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rechargeable battery. The optimization problem is:

max
pi≥0

N+1∑

i=1

Li

2
log (1 + pi) (7)

s.t.
∑̀

i=1

Lipi ≤
`−1∑

i=0

Ei, ` = 1, . . . , N + 1 (8)

∑̀

i=0

Ei −
∑̀

i=1

Lipi ≤ Emax, ` = 1, . . . , N (9)

We note that the constraint in (8) must be satisfied with
equality for ` = N + 1, otherwise, we can always increase
some pi without conflicting any other constraints, increasing
the resulting number of bits transmitted.

The objective function in (7) is concave in the vector
of powers and the constraints are convex. Hence the above
optimization problem has a unique maximizer. We define the
following Lagrangian function [10] for any λi ≥ 0 and µi ≥ 0,

L =
N+1∑

i=1

Li

2
log (1 + pi)−

N+1∑

j=1

λj

(
j∑

i=1

Lipi −
j−1∑

i=0

Ei

)

−
N∑

j=1

µj

(
j∑

i=0

Ei −
j∑

i=1

Lipi − Emax

)
(10)

Lagrange multipliers {λi} are associated with constraints in
(8) and {µi} are associated with (9). Additional complimen-
tary slackness conditions are as follows,

λj

(
j∑

i=1

Lipi −
j−1∑

i=0

Ei

)
= 0, j = 1, . . . , N (11)

µj

(
j∑

i=0

Ei −
j∑

i=1

Lipi − Emax

)
= 0, j = 1, . . . , N (12)

In (11), j = N + 1 is not included since this constraint is in
fact satisfied with equality. Note also that as pi > 0, we did
not include any slackness conditions for pi.

We apply the KKT optimality conditions to this Lagrangian
to obtain the optimal power levels p∗i in terms of the Lagrange
multipliers as,

p∗i =
1(∑N+1

j=i λj −
∑N

j=i µj

) − 1, i = 1, . . . , N (13)

and p∗N+1 = 1
λN+1

−1. Note that p∗i that satisfy
∑N+1

i=1 Lip
∗
i =∑N

i=0 Ei is unique. Based on the expression for p∗i in terms
of the Lagrange multipliers in (13), we have the following
observation on the structure of the optimal power allocation.

Theorem 1 When Emax = ∞, the optimal power levels is a
monotonically increasing sequence: p∗i+1 ≥ p∗i . Moreover, if
for some `,

∑`
i=1 Lip

∗
i <

∑`−1
i=0 Ei, then p∗` = p∗`+1.

Proof: Since Emax = ∞, constraints in (9) are satisfied
without equality and µi = 0 for all i by slackness conditions

in (12). From (13), since λi ≥ 0, optimum p∗i are mono-
tonically increasing: p∗i+1 ≥ p∗i . Moreover, if for some `,∑`

i=1 Lip
∗
i <

∑`−1
i=0 Ei, then λ` = 0, which means p∗` = p∗`+1.

¥

The monotonicity in Theorem 1 is a result of the fact that
energy may be spread from the current time to the future for
optimal operation. Whenever a constraint in (8) is not satisfied
with equality, it means that some energy is available for use
but is not used in the current epoch and is transferred to future
epochs. Hence, the optimal power allocation is such that, if
some energy is transferred to future epochs, then the power
level must remain the same. However, if the optimal power
level changes from epoch i to i + 1, then this change should
be in the form of an increase and no energy is transferred
for future use. That is, the corresponding constraint in (8) is
satisfied with equality.

If Emax is finite, its effect on the optimal power allocation
is observed through µi in (13). In particular, if the constraints
in (9) are satisfied without equality, then optimal p∗i are
still monotonically increasing since µi = 0. However, as
Ei ≤ Emax for all i, the constraint with the same index in
(8) is satisfied without equality whenever a constraint in (9)
is satisfied with equality. Hence, a non-zero µi and a zero λi

appear in p∗i in (13). This implies that the monotonicity of
p∗i may no longer hold. Emax constraint restricts power levels
to take the same value in adjacent epochs as it constrains the
energy that can be transferred from the current epoch to the
future epochs. Indeed, from the constraints in (9), the energy
that can be transferred from the current, say the ith, to the
future epochs is Emax − Ei. Hence, the power levels are
equalized only to the extent that Emax constraint allows.

A. Directional Water-Filling Algorithm

We interpret the observed properties of the optimal power
allocation as a directional water-filling scheme where water
is analogous to energy and its level corresponds to transmit
power. When E units of energy is filled into a time interval
of length L, the water level is E

L . When Emax is sufficiently
large, in a two epoch system if E0

L1
> E1

L2
, some energy is

transferred from epoch 1 to epoch 2 so that the levels are
equalized. However, due to energy causality if E0

L1
< E1

L2
,

no energy can flow from right to left and the water levels
are not equalized. We implement this using right permeable
taps, which let energy flow only from left to right. In the
water-energy analogy, battery capacity Emax forms a physical
constraint on the amount of energy, or water, that can be
transferred to future epochs. If the equalizing water level
requires more than Emax − Ei amount of energy to be
transferred, then only Emax−Ei can be transferred. Because,
otherwise, the energy level in the next epoch exceeds Emax

causing overflow of energy.

IV. MAXIMIZING THROUGHPUT IN A FADING CHANNEL

We now solve for the offline optimal policy for the fading
channel utilizing the insights obtained in the previous section.
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The channel state changes M times and energy arrives N times
in the duration [0, T ). Hence, we have M + N + 1 epochs.
Similar to the non-fading case, the optimal power management
strategy is such that the transmit power is constant in each
event epoch. We again denote the transmit power in epoch i
by pi, for i = 1, . . . , M + N + 1. We define Ein(i) as the
energy arrived in epoch i. Hence, Ein(i) = Ej for some j
if event i is an energy arrival and Ein(i) = 0 if event i is
a fade level change. Also, Ein(1) = E0. We have causality
constraints due to energy arrivals and Emax constraints due to
finite battery size. Hence, the problem in the fading case is:

max
pi≥0

M+N+1∑

i=1

Li

2
log (1 + hipi) (14)

s.t.
∑̀

i=1

Lipi ≤
∑̀

i=1

Ein(i), ∀` (15)

∑̀

i=1

Ein(i)−
∑̀

i=1

Lipi ≤ Emax, ∀` (16)

Note that, as in the non-fading case, the constraint in (15) for
` = M+N+1 must be satisfied with equality, since otherwise,
we can always increase one of pi to increase the throughput.

As in the non-fading case, the objective function in (14) is
concave and the constraints are convex. The optimization prob-
lem has a unique optimal solution. We define the Lagrangian,

L =
M+N+1∑

i=1

Li

2
log (1 + hipi)

−
M+N+1∑

j=1

λj

(
j∑

i=1

Lipi −
j∑

i=1

Ein(i)

)

−
M+N+1∑

j=1

µj

(
j∑

i=1

Ein(i)−
j∑

i=1

Lipi − Emax

)

+
M+N+1∑

i=1

ηipi (17)

Note that we have not employed the Lagrange multipliers {ηi}
in the non-fading case, since in that case, we need to have all
pi > 0. However, in the fading case, some of the optimal
powers can be zero depending on the channel fading state.
Associated complimentary slackness conditions are,

λj

(
j∑

i=1

Lipi −
j∑

i=1

Ein(i)

)
= 0, ∀j (18)

µj

(
j∑

i=1

Ein(i)−
j∑

i=1

Lipi −Emax

)
= 0, ∀j (19)

ηjpj = 0, ∀j (20)

It follows that the optimal powers are given by

p∗i =
[
νi − 1

hi

]+

(21)

where the water level in epoch i, νi, is

νi =
1∑M+N+1

j=i λj −
∑M+N+1

j=i µj

(22)

We have the following observation for the fading case.

Theorem 2 When Emax = ∞, for any epoch i, the optimum
water level νi is monotonically increasing: νi+1 ≥ νi. More-
over, if some energy is transferred from epoch i to i + 1, then
νi = νi+1.

Proof: Emax = ∞ assumption results in µi = 0 for all i.
From (22), and since λi ≥ 0, we have νi+1 ≥ νi. If energy is
transferred from the ith epoch to i + 1st epoch, then the ith
constraint in (15) is satisfied without equality. This implies,
by the slackness conditions in (18), that for those i, we have
λi = 0. Hence, by (22), νi = νi+1. In particular, νi = νj for
all epochs i and j that are in between two consecutive energy
arrivals as there is no wall between these epochs and injected
energy freely spreads into these epochs. ¥

As in the non-fading case, the effect of finite Emax is ob-
served via the Lagrange multipliers µi. In particular, whenever
Emax constraint is satisfied with equality, the monotonicity of
the water level no longer holds. Emax constrains the amount
of energy that can be transferred from one epoch to the
next. Specifically, the transferred energy cannot be larger than
Emax − Ein(i). Note that this constraint is trivially satisfied
for those epochs with Ein(i) = 0 because Ein(i) < Emax.

A. Directional Water-Filling Algorithm

The directional water-filling algorithm in the fading channel
requires walls at the points of energy arrival, with right
permeable water taps in each wall which allows at most Emax

amount of water to flow. The water levels when each right
permeable tap is turned on will be found by the directional
water-filling algorithm. Optimal power allocation p∗i is then
calculated by plugging the resulting water levels into (21). An
example run of the algorithm is shown in Fig. 3, for a case
of 12 epochs. Three energy arrivals occur during the course
of the transmission, in addition to the energy available at time
t = 0. We observe that the energy level equalizes in epochs 2,
4, 5, while no power is transmitted in epochs 1 and 3, since
the channel gains in these epochs are too low (i.e., 1

hi
too

high). The energy arriving at the beginning of epoch 6 cannot
flow left due to causality constraints, which are enforced by
right permeable taps, which allow energy flow only to the
right. We observe that the energy equalizes between epochs
8 through 12, however, the excess energy in epochs 6 and 7
cannot flow right, due to the Emax constraint enforced by the
right permeable tap between epochs 7 and 8.

V. TRANSMISSION COMPLETION TIME MINIMIZATION IN
A FADING CHANNEL

In contrast to the infinite backlog assumption of the previous
sections, we now assume that the transmitter has B bits to be
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Fig. 3. Directional water-filling with right permeable taps in a fading channel.

communicated to the receiver in the energy harvesting and
fading channel setting. Our objective is now to minimize the
time necessary to transmit these B bits. The problem is:

min T (23)

s.t.
N+1∑

i=1

Li

2
log (1 + hipi) = B (24)

∑̀

i=1

Lipi ≤
∑̀

i=1

Ein(i), ` = 1, . . . , N + 1 (25)

∑̀

i=1

Ein(i)−
∑̀

i=1

Lipi ≤ Emax, ` = 1, . . . , N (26)

where N , N(T ) is the number of events in the interval
[0, T ]. Next, we introduce the maximum departure curve which
serves to map the transmission completion time minimization
problem to the throughput maximization problem.

A. Maximum Departure Curve

Given a deadline T , we define the maximum departure curve
D(T ) for a given energy arrival and channel fading profile as,

D(T ) = max
N(T )+1∑

i=1

Li

2
log (1 + hipi) (27)

The maximization in (27) is subject to the energy causality
and maximum battery storage capacity constraints in (25)
and (26). The maximum departure function D(T ) represents
the maximum number of bits that can be served out of the
backlog by the deadline T given the energy arrival and fading
sequences. This is exactly the solution of the problem studied
in the previous sections. Some characteristics of the maximum
departure curve are stated in the following lemma.

Lemma 1 The maximum departure curve D(T ) is a mono-
tonically increasing and continuous function of T . D(T ) is
not differentiable at {tei} and {tfi }.

The continuity and monotonicity of D(T ) implies that
the inverse function of D(T ) exists, and that for a closed

interval [a, b], D−1([a, b]) is also a closed interval. Since
D(T ) is obtained by the directional water-filling algorithm,
the derivative of D(T ) has the interpretation of the rate of
energy transfer from past into the future at time T , i.e., it is
the measure of the tendency of the water to flow right.

B. Solution of the Transmission Completion Time Minimiza-
tion Problem in a Fading Channel

We now solve the transmission completion time minimiza-
tion problem stated in (23)-(26). Minimization of the time to
complete the transmission of B bits available at the transmitter
is closely related with the maximization of the number of bits
that can be sent by a deadline. In fact, if the maximum number
of bits that can be sent by T is less than B, then it is not
possible to complete the transmission of B bits by T . As we
state formally below, if T ∗ is the minimal time to complete
the transmission of B bits, then necessarily B = D(T ∗). This
argument provides a characterization for T ∗ in terms of the
maximum departure curve, as stated in the following theorem.

Theorem 3 The minimum transmission completion time T ∗

to transmit B bits is T ∗ = min{t ∈MB} where MB = {t :
B = D(t)}.

VI. CONCLUSIONS

We developed optimal energy management schemes for en-
ergy harvesting systems operating in fading channels, with fi-
nite capacity rechargeable batteries. We considered two related
problems under offline knowledge of the events: maximizing
the number of bits sent by a deadline, and minimizing the time
it takes to send a given amount of data. We solved the first
problem using a directional water-filling approach. We solved
the second problem by mapping it to the first problem via the
maximum departure curve function.
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