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Abstract—We investigate a delay minimization problem in a
multiple access wireless communication system. We consider a
discrete-time non-fading additive white Gaussian noise (AWGN)
multiple access channel. In each slot, bits arrive at the trans-
mitters randomly according to some distribution, which is i.i.d.
from user to user and from slot to slot. Each transmitter has an
average power constraint of P . Our goal is to allocate rates to
users, from the multiple access capacity region, based on their
current queue lengths, in order to minimize the average delay
of the system. We formulate the problem as a Markov decision
problem (MDP) with an average cost criterion. We first show
that the value function is increasing, symmetric and convex in
the queue length vector. Taking advantage of these properties,
we show that the optimal rate allocation policy is one which tries
to equalize the queue lengths as much as possible in each slot,
while working on the dominant face of the capacity region.

I. INTRODUCTION

Traditional information theory investigates transmission
problems from a physical layer perspective. In the simpli-
fied source-channel-destination model, information-theoretic
approaches assume the availability of an infinite number of
bits at the transmitter before the transmission starts. The
burstiness of the arrivals and the associated issue of delay are
mostly ignored. In contrast, network theory gives sophisticated
analysis of network layer issues, such as random arrivals and
network delay. However, in network-theoretic approaches, the
underlying physical layer model is usually very simplified,
e.g., in most approaches simultaneous transmissions are not
allowed, and even when they are allowed, a collision channel
model is used, which is too simplistic to capture what can be
achieved in the physical layer from an information-theoretic
perspective.

In recent years, many authors have taken efforts to bridge
the gap between information theory and network theory [1].
Reference [2] addresses the delay issue for an additive Gaus-
sian noise multiple access channel. Packets with random sizes
arrive according to a Poisson process, and are transmitted out
immediately with a fixed power. At the physical layer, the
receiver decodes a packet while treating other transmissions
as noise. Consequently, the service rate becomes a function
of the number of active users in the system. Reference [2]
derives the relationship between the average delay and a fixed
probability of error requirement. References [3], [4] and [5]
consider a discrete-time model for a power-constrained single-
user communication channel. Random arrivals queue at the
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transmitter to wait to be transmitted. In each slot, the transmit-
ter adapts its service rate, i.e., transmission rate, according to
the queue length and the channel state, as well as the average
power constraint, to minimize the average delay. Reference [3]
formulates the problem as a dynamic programming problem
and develops a delay-power tradeoff curve. References [4]
and [5] determine some structural properties of the optimal
power/rate allocation policy.

Reference [6] uses a continuous-time queueing model to
model the network layer behavior of a multiple access system.
The packets arrive at the transmitters according to independent
Poisson processes, and the packet lengths are exponentially
distributed. The physical layer is modelled as an additive
Gaussian noise channel, whose capacity region is a pentagon
for the two-user case. The goal of [6] is to select an operating
rate point inside the multiple access capacity region, as a
function of the current queue lengths, in order to minimize
the average packet delay. The transmission rates selected from
the capacity region serve as the current service rates of the
queues. Reference [6] develops the longer-queue-higher-rate
(LQHR) allocation strategy, which selects an extreme point
in the capacity region of the multiple access channel (i.e., a
corner point of the pentagon). Reference [6] shows that LQHR
minimizes the average delay of a symmetric system. Reference
[7] extends [6] to a potentially asymmetric setting, and proves
that the delay-optimal policy has a threshold (switch) structure.
Reference [8] develops a policy named “modified LQHR”
which works at a corner point of the pentagon when the queue
lengths are different, and switches to the mid-point of the
dominant face of the pentagon when the queue lengths become
equal. The “modified LQHR” algorithm is shown to minimize
the average bit delay in the system. The third chapter of [9]
extends “modified LQHR” to an M -user scenario.

In this paper, we consider a similar delay minimization
problem. In order to track the relationship between the av-
erage delay and the transmission rates more accurately and
also to consider more general arrivals, we adopt a discrete-
time queueing model and consider the problem from a bit
perspective rather than a packet perspective. We partition
the time into small slots. In each slot, bits arrive at the
transmitters randomly according to some general distribution.
At the beginning of each slot, we allocate transmission rates
from within the multiple access capacity region to the users,
based on their current queue lengths, to minimize the average
delay. In our model, the number of bits transmitted in each
slot is equal to the product of the transmission rate and



the number of channel uses in each slot. We formulate the
problem as an average cost Markov decision problem (MDP).
We first analyze the corresponding discounted cost MDP, and
obtain some properties of the value function. Based on these
properties, we prove that the delay optimal rate allocation
policy for this discounted MDP is to equalize the queue lengths
in each slot as much as possible. We then prove that this
“queue balancing policy” is optimal for the average cost MDP
as well.

Essentially, both the “modified LQHR” and our policy aim
to balance the queue lengths as well as to maximize the
throughput at any time. However, the continuous model in [8],
[9] allows the rates to be changed at any time, while our model
allows us to make decisions only at the beginning of each slot.
Consequently, the resulting optimal policies are different: The
operating point of the “modified LQHR” algorithm is either
one of the corner points or the mid-point of the dominant face
of the pentagon, while the “queue balancing policy” here may
operate at any point on the dominant face of the pentagon.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Physical Layer Model

We consider a two-user AWGN multiple access system

Y = X1 + X2 + Z (1)

where Xi is the signal of user i, and Z is a Gaussian noise with
zero-mean and variance σ2. In this multiple access system, the
capacity region is given by [10]
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The capacity region is a pentagon, as shown in Fig. 1. In
this paper we consider a symmetric two-user system, where
P1 = P2 = P . Our results can be generalized to the symmetric
K-user case.

B. Medium Access Control (MAC) Layer Model

In the MAC layer, we assume that the bits arrive at the
transmitters in random numbers in each slot, see Fig. 2. Let
a1[n] and a2[n] denote the number of bits arriving at the first
and the second transmitter, respectively, during time slot n.
Here, a1[n] and a2[n] are two independent random variables
with a common distribution Fa. We assume that the arrivals
are i.i.d. in n.

There is an infinite capacity buffer at each transmitter to
store the bits. Let q1[n] and q2[n] denote the number of bits
in the first and the second buffer, respectively, at the beginning
of the nth slot. At the beginning of each slot, the transmitters
decide on how many bits to transmit in this slot based on
the current lengths of the two queues. Let d1[n] and d2[n]
denote the number of bits to be transmitted from the first and
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Fig. 1. The capacity region for a two-user multiple access system.
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Fig. 2. System model.

the second queue, respectively, in the nth time slot. Let us
define q[n] , (q1[n], q2[n]), d[n] , (d1[n], d2[n]), and a[n] ,
(a1[n], a2[n]). Then, the queue lengths evolve according to

q[n + 1] = (q[n]− d[n])+ + a[n] (5)

where (x)+ denotes max(0, x).
If the number of channel uses in a slot is τ , the transmission

rate of user i becomes Ri[n] = di[n]/τ . Consequently, the
actual rates of the users that need to be selected from the
capacity region described by (2)-(4), are proportional to d1[n]
and d2[n], and therefore, (d1[n], d2[n]) can be viewed as
(scaled) rates. In order to simplify the notation, we will call
di[n] = Ri[n]τ as the rate of user i for slot n. The corre-
sponding scaled capacity region that (d1, d2) should reside in
is described by (2)-(4) by multiplying right hand sides by τ .

C. Formulation as an MDP

According to Little’s law [11], minimizing the average
delay in the system is equivalent to minimizing the average
number of bits in the system, which is the average sum
of queue lengths. If the system starts from state q[1], the
delay minimization problem is to obtain optimal policy d[n],
n = 1, 2, . . . to minimize

lim sup
N→∞

1
N

E

[
N∑

n=1

(q1[n] + q2[n])

]
(6)

Therefore, this problem can be formulated as a standard aver-
age cost MDP. The state space consists of all possible queue
length vectors, while the policy space is the set of operating
points within the multiple access capacity region. In principle,
the values of qi[n], di[n] can only be integers, however, for
practical applications, one bit is a fine enough precision that
we can use a fluid model to reasonably approximate the
original discrete-state system.



III. THE DISCOUNTED COST PROBLEM

Instead of considering the minimization problem with the
average cost criterion in (6) directly, we first consider the
following minimization problem with a total discounted cost
criterion

E

[ ∞∑
n=1

βn(q1[n] + q2[n])

]
(7)

where 0 < β < 1 is the discount factor. We will return to the
average cost criterion in (6) by letting β go to 1.

Let us define V β(q) to be the total discounted cost starting
from an initial state q. Then, for the optimization problem
with criterion (7), V β(q) must satisfy the following optimality
condition [12]

V β(q) = min
d∈C

{
q1 + q2 + βE

[
V β((q− d)+ + a)

]}
(8)

We will first start with a discounted cost problem over
finite horizon N . For this problem with an initial state q, the
dynamic programming formulation is

V β
N (q) = min

d∈C

{
q1 + q2 + βE

[
V β

N−1((q− d)+ + a)
]}

(9)

with V β
0 (·) = 0. Since the instantaneous cost q1[n] + q2[n] is

positive, and the policy space is finite [12]

V β
N (q) → V β(q) as N →∞ (10)

where V β(·) is the unique bounded solution of (8).
In the following, we will analyze the discounted cost

problem and obtain structural properties of the value function
V β(q). We will find these structural properties of V β(q)
by examining the structural properties of the finite-horizon
discounted cost problem V β

N (q).

Lemma 1 V β(q) is increasing in q1 and q2.

Proof: From (10), we know that proving V β(q) is increasing
in q1 and q2 is equivalent to proving V β

N (q) is increasing in
q1 and q2 for every N . We prove this through induction. First,
when N = 0, 1, this is trivially true. Next, we assume that it is
true for N−1. We will prove that V β

N (q1+1, q2) > V β
N (q1, q2)

for any positive (q1, q2).

V β
N (q1 + 1, q2)

= q1 + q2 + 1 + βE
[
V β

N−1((q1 + 1− d∗1)
+ + a1,

(q2 − d∗2)
+ + a2)

]
(11)

≥ q1 + q2 + 1 + βE
[
V β

N−1((q1 − d∗1)
+ + a1,

(q2 − d∗2)
+ + a2)

]
(12)

> min
d∈C

{
(q1 + q2) + βE

[
V β

N−1

(
(q1 − d1)+ + a1,

(q2 − d2)+ + a2)
]}

(13)

= V β
N (q1, q2) (14)

where (d∗1, d
∗
2) in (11) is the point within the capacity re-

gion that minimizes V β
N (q1 + 1, q2), and (12) follows from

the assumption that V β
N−1(q1, q2) is increasing for every q1.

Therefore, V β
N (q) is increasing in q1 for every N . Using (10),

this implies that V β(q) is increasing in q1. Now, following the
same procedure for q2, we can prove that V β(q) is increasing
in q2 as well. ¥

Lemma 2 In (8), the optimal operating point d must be on
the boundary of the capacity region C.

Proof: For an initial state q, if the optimal operating point
d = (d1, d2) is not on the boundary of the capacity region but
on the interior of the capacity region, then, we can always find
points d̄ = (d′1, d2), d̃ = (d1, d

′
2) that are on the boundary of

the capacity region with d′1 > d1, d′2 > d2. Note that d̄ ≥ d
and d̃ ≥ d. Then, by Lemma 1, we have

E
[
V β((q− d̄)+ + a)

] ≤ E
[
V β((q− d)+ + a)

]
(15)

and

E
[
V β((q− d̃)+ + a)

]
≤ E

[
V β((q− d)+ + a)

]
(16)

This contradicts the optimality of d. Thus, d must be on the
boundary of the capacity region. ¥

Lemma 3 V β(q) is symmetric and jointly convex in q.

Proof: The symmetry property can be proved by induction.
Note that V β

N (q) is symmetric for N = 0, 1. Assuming that
V β

N−1(q) is symmetric, it is easy to see that V β
N (q) would

be symmetric. Now, taking the limit N → ∞, it follows that
V β(q) is symmetric.

We prove the convexity of V β(q) through induction as well.
When N = 0, 1, it is trivial to see that V β

N (q) is convex in
q. Next, we assume that V β

N−1(q) is convex in q. Given two
different queue length vectors x , (x1, x2) and y , (y1, y2),
we have

λV β
N (x) + (1− λ)V β

N (y)
= λ(x1 + x2) + (1− λ)(y1 + y2)

+ λβE
[
V β

N−1((x− b∗)+ + a)
]

+ (1− λ)βE
[
V β

N−1((y − d∗)+ + a)
]

(17)

≥ λ(x1 + x2) + (1− λ)(y1 + y2)+

βE
[
V β

N−1

(
λ(x− b∗)+ + (1− λ)(y − d∗)+ + a

)]
(18)

≥ λ(x1 + x2) + (1− λ)(y1 + y2)+

βE
[
V β

N−1

((
λ(x− b∗) + (1− λ)(y − d∗)

)+ + a
)]

(19)

≥ min
d∈C

{
λ(x1 + x2) + (1− λ)(y1 + y2)+

βE
[
V β

N−1

((
λx + (1− λ)y − d

)+ + a
)]}

(20)

= V β
N (λx + (1− λ)y) (21)



where b∗ and d∗ are the minimizers for V β
N (x) and V β

N (y),
respectively. Here, (18) follows from the assumption of the
convexity of V β

N−1(·), (19) follows from the convexity of the
function (·)+, and (20) is valid because b∗,d∗ ∈ C, and C is
a convex set, implying λb∗ + (1− λ)d∗ ∈ C. ¥

Before we move on to the next structural property of
the function V β(q), we need to introduce the concepts of
majorization and Schur-convexity.

Definition 1 ( [13]) Given x,y ∈ Rd, we say that x ma-
jorizes y, and we write x º y, if

k∑

i=1

xi ≥
k∑

i=1

yi, k ∈ {1, . . . , d− 1} (22)

d∑

i=1

xi =
d∑

i=1

yi (23)

where xi and yi are the ith largest elements of x and y,
respectively.

Definition 2 ( [13]) A function f : Rd → R is said to be
Schur-convex when x º y implies f(x) ≥ f(y).

A function is Schur-convex if it is symmetric and convex
[13]. Using Lemma 3, we conclude that V β(q) is Schur-
convex. However, given that x º y, we cannot directly claim
that V β(x+a) ≥ V β(y +a) for every a. This is because the
randomness of a may reverse the majorization relationship
between x + a and y + a. However, provided that V β(q) is
symmetric and convex, and a has i.i.d. components, we can
prove that E[V β(x + a)] ≥ E[V β(y + a)] if x º y.

Lemma 4 For i.i.d. ais x º y implies E[V β(x + a)] ≥
E[V β(y + a)].

Proof: When a1 = a2, clearly, x + a º y + a, and V β(x +
a) ≥ V β(y + a). When a1 6= a2, we evaluate the functions
V β(x + a) and V β(y + a) at two symmetric points (c1, c2)
and (c2, c1). In order to simply the notation, for any vector
v = (v1, v2), we define v̌ = (v2, v1). Because ais are i.i.d.,
the two points c, č have the same probability mass. Without
loss of generality, we assume c1 > c2, x1 ≥ x2, y1 ≥ y2.
Since x º y, we have x1 ≥ y1 ≥ y2 ≥ x2.

Consider four vectors (x + c), (x̌ + c), (y + c), (y̌ + c).
We see that they are four points on the line q1 + q2 = x1 +
x2 + c1 + c2. Moreover, since x1 ≥ y1 ≥ y2 ≥ x2, (x + c)
and (x̌ + c) are the two outer points, and the mid-point of
these two points is the same as the mid-point of the other two
points. Since V β(q) is convex, we have

V β(x + c) + V β(x̌ + c) ≥ V β(y + c) + V β(y̌ + c) (24)

We also note that because of the symmetry property of V β(q)
we have V β(x̌+c) = V β(x+ č). Similarly, we have V β(y̌+
c) = V β(y + č). Therefore, (24) is equivalent to

V β(x + c) + V β(x + č) ≥ V β(y + c) + V β(y + č) (25)

Integrating over a1, a2, we get

E[V β(x + a)]

=
∫

a1>a2

V β(x + a)+
∫

a1<a2

V β(x + a)+
∫

a1=a2

V β(x + a)

=
∫

a1<a2

(V β(x + a) + V β(x + ǎ)) +
∫

a1=a2

V β(x + a)

≥
∫

a1<a2

(V β(y + a) + V β(y + ǎ)) +
∫

a1=a2

V β(y + a)

= E
[
V β(y + a)

]

where the inequality follows from (25). ¥
We now combine Lemmas 1 through 4 to obtain the main

result of this paper which is given in Theorem 1.

Theorem 1 To minimize the average delay, in each slot, the
transmitters should choose an operating point on the dominant
face of the capacity region that equalizes the queue lengths. If
no such operating point exists, the transmitters should operate
at a corner point which minimizes the queue length difference.

Proof: We know from Lemma 2 that, in each slot, the
transmitters must operate on the dominant face (sum-rate
constrained face) of the multiple access capacity region.

First, we prove that if there exists a point on the dominant
face that equalizes the queue lengths, then this point must be
the optimal operating point. Given queue lengths q = (q1, q2),
let d = (d1, d2) be such a point, i.e., (q1−d1)+ = (q2−d2)+.
If (q1−d1)+ = (q2−d2)+ = 0, then, clearly, d is the optimal
operating point. We consider the case when q1−d1 = q2−d2 >
0. To prove the claim by contradiction, let us assume that d
is not optimal, but b = (b1, b2) is the optimal point on the
dominant face. Since both d and b are on the dominant face of
the capacity region: d1+d2 = b1+b2. Since with a fixed sum,
the vector with identical components is majorized by any other
vector [13], we have (q1 − b1, q2 − b2) º (q1 − d1, q2 − d2).
Without loss of generality, we assume q1 − b1 > q2 − b2, i.e.,
q1 − b1 > q1 − d1 = q2 − d2 > q2 − b2. If q2 − b2 ≥ 0, we
have ((q1− b1)+, (q2− b2)+) º ((q1−d1)+, (q2−d2)+), and
using Lemma 4, this implies

E[V β((q− b)+ + a)] ≥ E[V β((q− d)+ + a)] (26)

On the other hand, if q2 − b2 < 0, we have

E[V β((q− b)+ + a)]

= E[V β((q1 − b1) + a1, a2)] (27)

≥ E[V β(q1 − d1 + a1, d1 − b1 + a2)] (28)

= E[V β(q1 − d1 + a1, b2 − d2 + a2)] (29)

> E[V β(q1 − d1 + a1, q2 − d2 + a2)] (30)

= E[V β((q− d)+ + a)] (31)

where (28) follows from (q1− b1, 0) º (q1− d1, d1− b1) and
Lemma 4, (29) follows from the fact that d1 + d2 = b1 + b2,
and (30) is valid because we assumed that q2 − b2 < 0, thus
q2 − d2 > b2 − d2, and we apply Lemma 1. The results in



(26) and (31) contradict the optimality of b, and therefore, d
must be the optimal operating point.

Next, we prove that if there does not exist a point on
the dominant face of the capacity region which equalizes the
queue lengths, then the optimal operating point must be one
of the corner points. Let us assume that the optimal operating
point d = (d1, d2) is not a corner point, and without loss of
generality, let us assume that (q1 − d1)+ > (q2 − d2)+. If
q1 − d1 > q2 − d2 ≥ 0, we can always find a small enough
δ > 0, such that the operating point (d1 + δ, d2− δ) is also on
the dominant face, and q1−(d1+δ) > q2−(d2−δ) > 0. Since
(q1 − d1, q2 − d2) º (q1 − (d1 + δ), q2 − (d2 − δ)), based on
Lemma 4, we have E[V β((q−d)+ +a)] ≥ E[V β(q1− (d1 +
δ)+a1, q2−(d2−δ)+a2)], and this contradicts the optimality
of d. On the other hand, if q1 − d1 > 0 > q2 − d2, we can
also find a small enough δ > 0, such that q1− (d1 + δ) > 0 ≥
q2− (d2− δ), and (d1 + δ, d2− δ) is on the dominant face as
well. Therefore, we have 0 < q1 − (d1 + δ) < q1 − d1, and
(q2−d2)+ = (q2−d2 + δ)+ = 0. According to Lemma 1, we
have V β(q1 − d1 + a1, a2) > V β(q1 − (d1 + δ) + a1, a2)
for any value of a1 and a2. Therefore, E[V β(q1 − d1 +
a1, a2)] > E[V β(q1− (d1 + δ)+ a1, a2)], and this contradicts
the optimality of d. Hence, the optimal operating point, in this
case, must be one of the corner points. ¥

Using Theorem 1, we express the optimal operating point
d∗ = (d∗1, d

∗
2) as a function of the queue lengths q = (q1, q2)

d∗ =





(
q1−q2+Cs

2 , q2−q1+Cs

2

)
, |q1 − q2| < 2C1 − Cs

(C1, Cs − C1), q1 − q2 > 2C1 − Cs

(Cs − C2, C2), q1 − q2 < Cs − 2C1

This optimal rate allocation scheme works on the dominant
face of the capacity region and therefore maximizes the
number of bits transmitted in each slot; and, at the same
time, it tries to balance the queue lengths as much as possible,
which, in turn, minimizes the probability that any one of the
queues becomes empty in the upcoming slots. When a queue
becomes empty, the system resources cannot be utilized most
efficiently, as even though the user with an empty queue has
power to transmit, it does not have any bits to transmit.

Finally, while we developed Theorem 1 for the discounted
cost criterion, we can find a sub-sequence of discount factors
βn such that βn → 1 as n → ∞. Therefore, the policy we
developed is optimal for the average cost problem as well.

IV. SIMULATION RESULTS

We consider a two-user AWGN multiple access channel,
with C1 = C2 = 20 bits/slot and Cs = 30 bits/slot. The
number of bits arriving at the transmitters in each slot follows
a Poisson distribution with parameter λ. We compare two
policies: the optimal policy developed in this paper which
tries to balance the queue lengths in each slot and the LQHR
algorithm developed in [6] which chooses a corner point of
the capacity region and allocates the larger rate to the longer
queue. We plot the average delay versus λ in Fig. 3.

We observe that when λ is small, both the LQHR policy
and the queue balancing policy yield delay close to one slot,
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Fig. 3. Average delay versus arrival arrival rate.

and the difference between these two policies is insignificant.
This is because, the system has a light traffic, and both policies
empty both queues in almost all slots. When λ becomes very
close to the boundary of the capacity region, the average delay
grows rapidly under both policies, and again the difference
between the two policies becomes insignificant. This is be-
cause, the system has a heavy traffic, and the probability that
the queues become empty is very small under both policies,
and the actual number of departures in each slot is almost
the same for both policies. When λ is neither very small
nor very large, the queue balancing policy outperforms the
LQHR policy significantly. This is because, equalizing the
queue lengths minimizes the probability that one queue is
large while the other queue is empty or close to empty, and
consequently utilizes the system resources more efficiently.
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