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Abstract—We consider a communication channel with two
transmitters and one receiver, with an underlying rate region
which is approximated as a general pentagon. Different from
the Gaussian multiple access channel (MAC) capacity region, the
sum-rate on the dominant face of this pentagon is not a constant.
We allocate rates from this rate region to users according to
their current queue lengths in order to minimize the average
delay in the system. We formulate the problem as a Markov
decision problem (MDP), and derive the structural properties of
the corresponding discounted-cost MDP. We show that the delay-
optimal policy has a switch curve structure. For the discounted-
cost problem, we prove that the switch curve has a limit along
one of the dimensions.

I. INTRODUCTION

Traditional information theory ignores the burstiness of
arrivals and the associated issue of delay by assuming that
all of the bits have already arrived and are available at the
transmitter before the transmission starts. This is necessary to
invoke asymptotics (e.g., large block sizes), which is needed
to prove reliability of communication. Network and queueing
theory, on the other hand, give sophisticated analysis for delay
and related issues, but, assume simplified models for the
underlying communication rates, which serve as the server
rates of the queues. Network theory typically assumes slotted
or time-divided communications in order to minimize the
interactions between the queues, as the analysis of interacting
queues is known to be notoriously difficult. Many authors have
pointed to the need to bring information and network theory
together to jointly address the goals of reliability, high rates
and low delay, e.g., [1]. The goal of this paper is to use a
general pentagon shaped underlying rate region (hence, non-
time-divided transmissions) and determine the optimal rate
allocation policy from this available rate region, as a function
of the current queue sizes of the users, to minimize the delay.

Delay minimization for a single-user communication chan-
nel has been investigated in [2]–[4], where the structural
properties of the optimum power/rate allocation policies, and
relationships between average power and delay have been
determined for fading channels, using dynamic programming
and Markov decision process (MDP) formulations. In these
works, due to the large number of possible rate/power choices
at each channel state, it has been almost impossible to get ana-
lytical closed-form optimal solutions. For multi-user systems,
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even the properties of the optimum rate allocation have been
impossible to obtain, except for special rate regions.

Reference [5] considers a symmetric Gaussian multiple
access channel (MAC), whose capacity region for two-users
is a symmetric pentagon. Reference [5] proves that in order
to minimize the packet delay, the system should operate at an
extreme point of the MAC capacity region, i.e., at one of the
two corner points of the symmetric pentagon. In particular,
[5] determines explicitly the corner point the system should
operate at as a function of the queue sizes, by proving that
the larger rate should be given to the user with the larger
queue size, hence the name of the proposed policy: longer-
queue-higher-rate (LQHR). Reference [6] generalizes [5] to
a potentially asymmetric setting, and proves that the system
should again operate at one of the two corner points of the
capacity region, which in this case is a potentially asymmetric
pentagon. This proves that the delay-optimal policy has a
switch structure, i.e., that the queue state space should be
divided into two, and in each region, the system should operate
at one of the two corner points. However, unlike the symmetric
case in [5], the explicit form of the switch curve is unknown.
Reference [7] develops a policy named “modified LQHR”
which works at a corner point of the pentagon when the
queue lengths are different, and switches to the mid-point of
the dominant face of the pentagon when the queue lengths
become equal. The “modified LQHR” algorithm is shown to
minimize the average bit delay in a symmetric system. The
third chapter of [8] extends “modified LQHR” to a symmetric
M -user scenario. In [9], we consider a discrete-time symmetric
Gaussian MAC, and prove that the queue length balancing
policy, which minimizes the queue length difference while
working on the dominant face of the capacity region in each
slot, minimizes the average bit delay in the system.

From the literature above, we observe that the explicit so-
lution of the queue-length based delay-minimization problem
is known only for the symmetric Gaussian MAC, where the
underlying rate region is a symmetric pentagon. Even for
the asymmetric pentagon, the delay-minimizing policy is not
known. The reason for this is that delay-minimization requires
maximizing the throughput at the current time as well as
maximizing the throughput in the future. These are often
conflicting objectives. The first objective requires maximizing
the sum-rate while the second objective requires balancing
the queue lengths. Unbalanced queue lengths increases the



likelihood of one of the queues becoming empty, which results
in inefficiency of transmission, as it decreases the future
achievable sum-rates. Thanks to the special properties of the
capacity region of the symmetric Gaussian MAC, these two
objectives can be achieved simultaneously.

However, having a symmetric pentagon as a capacity region
is a peculiarity of the symmetric Gaussian MAC. The capacity
region of a general (non-Gaussian) MAC is not a pentagon,
it is a union of pentagons. Likewise, the capacity regions of
the fading Gaussian MAC, the Gaussian MAC with multiple
antennas, or the Gaussian MAC with user cooperation are not
pentagons. In this paper, we will consider a two-user commu-
nication channel with a general pentagon rate region. Different
from the Gaussian MAC capacity region, the pentagon we
assume does not have a 45◦ dominant face. The motivation to
study such a rate region is two-fold: First, it is the simplest
extension of the rate regions studied so far, that changes a
characteristic in a fundamental way. This characteristic is that
the two corner points on the dominant face do not have equal
sum-rates. Therefore, in this example rate region, we are able
to observe the tension between throughput optimality, i.e., the
desire to work at the point that yields the largest sum-rate,
and balancing the queue lengths, i.e., the desire to favor the
longer queue over the shorter one, more explicitly. Secondly,
this asymmetric pentagon with a non-45◦ dominant face can
be seen as a crude approximation of a general rate region,
as shown in Fig. 1. That is, we can imagine this asymmetric
pentagon to be the largest such shape fitting in a general rate
region.

Our goal in this paper is to assign rate pairs to users from
the underlying rate region based on their current queue lengths
in order to minimize the average delay in the system. We
formulate the problem as an MDP and prove that the delay-
optimal policy should operate at one of the two corner points
of the rate region. Through value iteration, we prove that a
switch curve structure exists in the queue state space. Next, we
prove that for the discounted-cost MDP, the switch curve has a
limit on one of the queue lengths, i.e., when one of the queue
lengths exceeds a threshold, the transmitters always operate at
the corner point which has the larger sum-rate (see Fig. 2).
That is, the delay-optimal policy favors throughput-optimality
(i.e., larger sum-rate) unless the other queue gets very large,
in which case, the policy favors balancing queue lengths. Our
result has two practical implications: First, it gives a partial
analytical characterization for the delay-optimal switch curve.
Secondly, it implies that we can operate the queues partially
distributedly, in that, if the current queue length of the first
user is larger than the limit, then this user does not need to
know the current queue length of the other user in order to
decide about the rate point at which it should operate on the
rate region.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a communication system with two transmitters,
and one receiver. The underlying rate region is a general
pentagon as shown in Fig. 1. We denote the two corner points
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Fig. 1. The asymmetric pentagon rate region with non-45◦ dominant face.

as points 1 and 2, with rate pairs (a1, b1) and (a2, b2), respec-
tively. Without loss of generality, we assume that a1 + b1 <
a2+b2, i.e., that point 2 has the larger sum-rate. We denote the
difference between the two sum-rates δ = a2 + b2− (a1 + b1).

In the medium access control layer, we assume that packets
arrive at the source nodes according to independent Poisson
processes with parameters λ1 and λ2. We also assume that
the packet lengths are independent and identically distributed
exponential random variables with unit mean. Therefore, for
a given transmission rate r, the transmission time for a packet
is an exponential random variable with parameter r. There is
a buffer with infinite capacity at each transmitter, storing the
packets until they are transmitted. Let q1(t), q2(t) denote the
number of packets in the two buffers at time t. The transmitters
determine their transmission rates, which are the components
of the rate vector r, where r is in the rate region, based on the
current queue length vector q(t) = (q1(t), q2(t)). Therefore,
on the medium access control layer, the queue lengths evolve
according to a continuous-time Markov chain, whose transition
rates are determined by the arrival and transmission rates.

According to Little’s law [10], minimizing the average delay
in the system is equivalent to minimizing the average number
of packets in the system. If the system starts from state q(0),
the delay minimization problem is to obtain an optimal policy
u, to minimize the long-term average cost:

lim sup
t→∞

1
t
E

[∫ t

0

q(s)T eds|q(0)
]

(1)

where e is the vector of all ones.
Sampling the system at certain epoches, we can convert the

original continuous-time problem into a discrete-time problem
[11]. Intuitively, we intend to sample the system at any epoch
when an arrival or departure occurs. However, because the
transition rates are different at different operating points, the
sampling frequency may be different for different states. In
order to sample the system at a uniform frequency, we adopt
the normalized method in [12]. Since a2 + b2 is the maximum
sum of transmission rates, the maximum total transition rate
of the system is λ1 + λ2 + a2 + b2, which we define as γ.
Let us denote the transmission rates of the users as r1 and
r2. If r1 + r2 < a2 + b2, we assume that there is a third
transmitter transmitting a dummy packet with rate a2 + b2 −
(r1+r2). Then, we sample at the epoches when either a packet
arrives, or a packet (dummy or real) departs. Therefore, the
sampling frequency for all of the states will be the same, and



the corresponding discrete-time Markov chain will precisely
represent the original system.

After sampling and discretizing the continuous-time system,
our goal will be to choose r at every transition epoch to
minimize the average delay. Let us denote the indices of the
transition epoches as n, n = 1, 2, . . .. Given the initial queue
lengths q0, the delay minimization problem is to determine
the optimal policy that minimizes:

lim sup
N→∞

1
N

E

[
N−1∑
n=0

q[n]T e|q[0] = q0

]
(2)

Let us define Ai and Di to be an arrival or (potential) depar-
ture at the ith queue, i = 1, 2. For example, A1q = (q1+1, q2),
D1q = ((q1 − 1)+, q2). We first define the corresponding
discounted-cost problem with a discount factor β, and obtain
the dynamic programming formulation:

V β
N (q) =qT e + βγ−1

[
λ1V

β
N−1(A1q) + λ2V

β
N−1(A2q)

+ min
r∈C

{
r1V

β
N−1(D1q) + r2V

β
N−1(D2q)

+ (a2 + b2 − r1 − r2)V
β
N−1(q)

}]
(3)

As N → +∞, V β
N (q) → V β(q), which is the unique solution

of the optimality equation:

V β(q) =qT e + βγ−1

[
λ1V

β(A1q) + λ2V
β(A2q)

+ min
r∈C

{
r1V

β(D1q) + r2V
β(D2q)

+ (a2 + b2 − r1 − r2)V β(q)
}]

(4)

This is a two-dimensional MDP, which is difficult to solve in
general. We first determine some structural properties of the
optimal policy.

Lemma 1 V β(q) is monotonically increasing in qi, i = 1, 2.

Lemma 2 The optimal operating point must lie on the bound-
ary of the capacity region. In addition, it must be one of the
two corner points.

Lemma 2 can be proved based on Lemma 1, which in turn
can be proved using induction.

Let T be an operator defined on real-valued functions by:

Tf(q) =qT e + βγ−1

[
λ1f(A1q) + λ2f(A2q)

+ min
{

a1f(D1q) + b1f(D2q) + δf(q),

a2f(D1q) + b2f(D2q)
}]

(5)

Therefore, the dynamic programming optimality equation can
be written as

V β
N+1(q) = TV β

N (q) (6)

III. AN INDUCTIVE PROOF OF THE SWITCH STRUCTURE

In this section, we prove that the delay-optimal policy has
a switch structure. In order to prove that, we first define a
set of functions with properties which are sufficient to have a
switch structure. We show that these properties are preserved
under the operator T . Since V β

0 = 0 is within this set, using
induction, we will show that V β will be within this set.

Let us define F to be the set of real-valued functions such
that:

1) f(q) is increasing in q1 and q2.
2) f(q+x)−f(q) is increasing in q1 and q2 for any fixed

x.
3) (a1−a2)f(D1q)+(b1−b2)f(D2q)+δf(q) is increasing

in q1.
4) (a1−a2)f(D1q)+(b1−b2)f(D2q)+δf(q) is decreasing

in q2.
Then, we have the following lemma.

Lemma 3 If f ∈ F , then Tf ∈ F .

The proof of Lemma 3, when δ = 0, can be found in [13].
When δ 6= 0, the proof is different, but can be carried out
similarly. Due to space limitations, the proof is omitted here.

Lemma 4 V β
n (q) ∈ F for all n.

This lemma can be verified as follows. Since V β
0 = 0, V β

0 is
in F . Using Lemma 3 recursively, we have V β

n (q) ∈ F for
n = 0, 1, 2, . . .. We now define the switch function:

sn(q1) = min
{
q2 :(a1 − a2)f(D1q) + (b1 − b2)f(D2q)

+ δf(q) ≤ 0
}

(7)

Theorem 1 The optimal policy for the discounted-cost MDP
has a switch structure, i.e., sn(q1) is increasing for every n.

This theorem can be proved using properties 3) and 4) of
V β

n (q). The switch curve partitions the queue state space into
two parts, each corresponding to one of the two operating
points (corner points of the pentagon). Following the argu-
ments in [6], [13], we can prove that the switch structure still
exists when β → 1.

IV. THE LIMIT ON THE SWITCH CURVE

Although we have shown that the delay optimal policy has a
switch structure, it is difficult to obtain the exact switch curve
analytically. Numerical techniques, such as value iteration
method, can be used to obtain the optimal policy. In this
section, we will show that the switch curve is bounded in
the q1-dimension. In other words, we can find a threshold N ,
such that, for all q1 greater than this threshold, the optimal
operating point is the second corner point of the pentagon.
In order to prove this, we start from an initial function f0,
which is linear in q1 + q2. We will use f0 to approximate V β

over a large portion of the state space. Specifically, this region



includes states q with q1, q2 > N , where N is a large enough
number. Let us define:

f0(q) =
1

1− β
(q1 + q2) +

β

(1− β)2
λ1 + λ2 − a2 − b2

λ1 + λ2 + a2 + b2
(8)

Clearly, f0 ∈ F . It is easy to verify that

Tf0(q)− f0(q) =





0 q1, q2 6= 0
β(a2+b2)
γ(1−β) q = 0

β(a1+δ)
γ(1−β) q1 = 0

βb2
γ(1−β) q2 = 0

(9)

that is, Tf0 and f0 differ only on the boundary, and for all
states away from the boundary, these two functions have the
same value. This is a key property that will be essential in this
section. Note that under the operator T , the difference caused
by the boundary only propagates into the interior region of the
state space by one layer in each iteration; rest of the states are
not affected by the operator.

Let us define:

|f |k = max{f(q) : q1, q2 ≥ 0, q1 + q2 ≤ k} (10)

which is the maximum value of the function f in the region
where the sum of the queue lengths is less than k. Similarly,
let us define

|f |∞ = sup{f(q) : q1, q2 ≥ 0} (11)

which is allowed to be infinity. Then, we have the following
property.

Lemma 5 For ∀f, g ∈ F , |Tf − Tg|k ≤ β|f − g|k+1.

Proof:

Tf(q)− Tg(q)

= βγ−1

[
λ1f(A1q)+λ2f(A2q)−λ1g(A1q)−λ2g(A2q)

+min
{
a1f(D1q)+b1f(D2q)+δf(q),a2f(D1q)+b2f(D2q)

}

−min
{
a1g(D1q)+b1g(D2q)+δg(q),a2g(D1q)+b2g(D2q)

}]

Since |min{a, b} − min{c, d}| ≤ max{|a − c|, |b − d|}, we
have

|Tf − Tg|k
≤ βγ−1

[
λ1|f − g|k+1 + λ2|f − g|k+1 (12)

+ max
{

a1|f − g|k−1 + b1|f − g|k−1 + δ|f − g|k,

a2|f − g|k−1 + b2|f − g|k−1

}]

≤ βγ−1(λ1 + λ2 + a2 + b2)|f − g|k+1 (13)
= β|f − g|k+1 (14)

completing the proof. ¥

Lemma 6 Tnf0 converges to a function f as n → +∞, and
Tf = f .

Proof: Since f0 ∈ F , Tnf0 ∈ F for any n > 0.

|Tn+1f0 − Tnf0|k ≤ β|Tnf0 − Tn−1f0|k+1 (15)
≤ βn|Tf0 − f0|k+n (16)

≤ βn+1(a2 + b2)
γ(1− β)

(17)

where (17) follows from (9). We observe that (17) does not
depend on k, thus, |Tn+1f0 − Tnf0|∞ is uniformly bounded
by (17). Since β < 1, the right hand side of (17) forms a
Cauchy sequence, therefore, Tnf0 converges to a function f
pointwise. In other words, for any ε, we can find an N1(ε)
such that when n ≥ N1(ε), we have |f − Tn−1f0|∞ ≤ ε.
Thus, for such n, we have

|Tf − f |∞ ≤ |Tf − Tnf0|∞ + |Tnf0 − f |∞ (18)

≤ β|f − Tn−1f0|∞ + |Tnf0 − f |∞ (19)
≤ (β + 1)ε = ε′ (20)

Therefore, for any ε′, we can find a n > N1( ε′
β+1 ), such that

|Tf − f |∞ ≤ ε′. In other words, Tf and f are arbitrarily
close. Thus, Tf = f . ¥

Lemma 7 Let V β
0 (q) = 0, then, V β

n (q) = TnV β
0 (q) con-

verges to V β(q), and f(q) = V β(q).

Proof: In order to prove that f(q) = V β(q) pointwise, we
start from the following:

|f − V β |k (21)

≤ |f − Tnf0|k + |Tnf0 − V β
n |k + |V β

n − V β |k (22)

≤ |f − Tnf0|k+β|Tn−1f0−V β
n−1|k+1+|V β

n − V β |k (23)

≤ |f − Tnf0|k + |V β
n − V β |k + βn|f0 − V β

0 |k+n (24)

= |f − Tnf0|k + |V β
n − V β |k

+ βn

(
n + k

1− β
+

β

(1− β)2
λ1 + λ2 − a2 − b2

λ1 + λ2 + a2 + b2

)
(25)

≤ ε1 + ε2 + ε3 (26)

where (23) follows from Lemma 5, (25) follows from the
definition of f0, and (26) follows from the fact that Tnf0

converges to f0, V β
n converges to V β , and βnn → 0.

Therefore, when n is large enough, we have the difference
bounded by (26). We note that (26) does not depend on k,
thus f(q) = V β(q) for any point q. ¥

Lemma 5 means that starting from f0 and performing the
iterations, V β converges to the same function if we started
from V β

0 = 0. The convergence point is the unique solution
of the optimality equation (4). Next, we will prove that f(q)
gets arbitrarily close to f0(q) when q1, q2 → +∞.

Lemma 8 |f − Tnf0|∞ ≤ βn+1(a2+b2)
γ(1−β)2 .



Proof:

|Tn+pf0 − Tnf0|k
≤ |Tn+pf0 − Tn+p−1f0|k + |Tn+p−1f0 − Tn+p−2f0|k

+ · · ·+ |Tn+1f0 − Tnf0|k
≤ (

βn+p−1 + βn+p−2 + · · ·+ βn
) |Tf0 − f0|k+n+p (27)

≤ βn(1− βp)
1− β

β(a2 + b2)
γ(1− β)

(28)

Note that (28) does not depend on k, therefore, |Tn+pf0 −
Tnf0|∞ is uniformly bounded, and we have

|f − Tnf0|∞ = lim
p→∞

|Tn+pf0 − Tnf0|∞ (29)

=
βn+1(a2 + b2)

γ(1− β)2
(30)

¥

Theorem 2 f(q) gets arbitrarily close to f0(q) when
q1, q2 → +∞. Therefore, the switch curve has a limit on q1.

Proof: For any fixed state q, we have

|f(q)− f0(q)|≤|f(q)− Tnf0(q)|+ |Tnf0(q)− f0(q)| (31)

Based on Lemma 8, we can see that for ∀ε, there exists N(ε),
such that |f − TN(ε)f0|∞ ≤ ε. From the definition in (11),

|f(q)− TN(ε)f0(q)| ≤ |f − TN(ε)f0|∞ ≤ ε (32)

At the same time, from (9), we know that TN(ε)f0(q) only
differs from f0(q) over the states which are within N(ε) layers
away from the boundary. Thus, for all q1 > N(ε), q2 > N(ε),

TN(ε)f0(q)− f0(q) = 0 (33)

Therefore, combining (31)-(33), for any q, q1 > N(ε), q2 >
N(ε), (31) is bounded by

|f(q)− f0(q)| ≤ |f − f0|∞ + 0 = ε (34)

i.e., −ε ≤ f(q) − f0(q) ≤ ε. Thus, in this region, as shown
in Fig. 2, we have

a1f(D1q) + b1f(D2q) + δf(q)− a2f(D1q)− b2f(D2q)
= (b1 − b2)f(D2q) + δf(q)− (a2 − a1)f(D1q) (35)
≥ (b1 − b2) (f0(D2q)− ε) + δ(f0(q)− ε)
− (a2 − a1) (f0(D1q) + ε) (36)

=
δ

1− β
− 2(a2 − a1)ε (37)

where the inequality follows from (34). Therefore, when

ε ≤ δ

2(a2 − a1)(1− β)
(38)

(37) is always greater than zero, thus point 2 is always better
than point 1. From Lemma 8, let

ε =
βn+1(a2 + b2)

γ(1− β)2
=

δ

2(a2 − a1)(1− β)
(39)

N

N

q2

q1

(q1, q2)

Fig. 2. The switch curve of the discounted-cost MDP.

from which, we have

N(ε) =
⌈
logβ

δγ(1− β)
2(a2 + b2)(a2 − a1)

⌉
− 1 (40)

Since we have proved in the previous section that the optimal
policy must have a switch curve structure, for any q, such that
q1 ≥ N(ε), the optimal policy is always to operate the system
at point 2. Thus, the switch curve has a limit. ¥

The result implies that when both q1, q2 are large, the
objective of maximizing the sum-rate is more important than
balancing the queue lengths in order to minimize the average
delay. Thus, in this scenario, operating at point 2 is optimal.
When one queue (q1 in this paper) becomes close to empty,
the objective of balancing the queue lengths becomes more
important, and the operating point must be switched from point
2 to point 1.
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