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Abstract—This paper characterizes an achievable channel
coding rate for a noiseless binary communication channel with
an energy harvesting (EH) transmitter at a given blocklength
n and error probability ✏. As energy arrives randomly at
the transmitter, codewords must obey the cumulative stochastic
energy constraints. The coupling of the energy constraints on
the symbols in a codeword makes the analysis fundamentally
different from that of discrete memoryless channels. We first
adopt a random coding scheme to construct the codebook with
statistical information of the EH process. We then analyze the
statistics of the corresponding output sequence. Specifically, we
prove that the average number of mismatches between the input
codeword and the output sequence scales as O(

p
n). Based on

such characterization, we then propose a decoding scheme, and
analyze the corresponding probability of decoding error. Finally,
we explicitly characterize the maximum size of the length-n
codebook generated by the random coding scheme in order
to achieve the average probability of error ✏. This leads to a
lower bound on the maximum achievable channel coding rate for
the EH communication channel. We show that the gap between
the lower bound and the corresponding channel capacity under
an equivalent average power constraint scales in O(l log n/

p
n),

where l is a constant depending on the error probability ✏, and
the statistics of the energy harvesting process.

I. INTRODUCTION

We consider an energy harvesting communication system,
where energy needed for communication is harvested by the
transmitter during the course of communication. As energy
arrives randomly at the transmitter, codewords must obey the
cumulative stochastic energy constraints. The impact of the
stochastic energy supply on the channel capacity has been
characterized in the asymptotic regime under different assump-
tions on the battery size. With an unlimited battery, [1] shows
that the capacity of the additive white Gaussian noise (AWGN)
channel is equal to the capacity of the same channel under an
average power constraint equal to the average recharge rate of
the battery. The fluctuations in the energy arrivals are averaged
out in the long run, which essentially reduces the sample path-
wise energy constraints to a single average power constraint.
When the battery-size is zero, [2] shows that an AWGN
channel with EH status causally available at the transmitter
can be modeled as a state-dependent channel, and its capacity
can be achieved by using a Shannon’s coding scheme [3]. With
finite battery size, [4] investigates the capacity of a discrete
memoryless channel (DMC). It is shown that the capacity can
be described using the Verdu-Han general framework [5]. If
the transmitted symbol only depends on the currently available
energy, the system reduces to a finite state channel. A special

case of the problem, i.e., the capacity of noiseless binary
channel with binary energy arrivals and unit-capacity battery
is discussed in [6]. It shows that the channel is equivalent to
an additive geometric-noise timing channel with causal noise
information available at the transmitter.

Different from previous work which focus on the iden-
tification of the capacity of energy harvesting channels in
the asymptotic regime, in this paper, we aim to characterize
the impact of stochastic energy constraints on the maximum
achievable channel coding rate in the finite blocklength regime.
The same problem without the stochastic energy constraints
imposed by the energy harvesting process has drawn great
attentions recently due to its practical importance [7]. Gen-
erally speaking, in the nonasymptotic regime, there is no
exact formula for such characterization. [7] proves that in
the finite blocklength regime, the backoff of the channel
coding rate from channel capacity is parameterized by the
channel dispersion, which measures the stochastic variability
of the channel relative to a deterministic channel with the
same capacity. However, the problem under stochastic energy
constraints at the transmitter has not been considered before.

Our objective is to evaluate the impact of stochastic variabil-
ity of the energy harvesting process on the channel capacity in
the finite blocklength regime. Intuitively, in the EH scenario,
the backoff from channel capacity is a function of the channel
dispersion, as well as the characteristics of the EH process.
In order to decouple the impact of energy variability from
the channel variability on the coding rate, as a first step,
we consider a deterministic channel without any variability.
Further, we assume that the statistics of the EH process
are available at the transmitter beforehand, and governs the
codebook design; See Fig. 1. Such assumptions make our
problem “dual” to that studied in [7]. Although the generation
of the codebook is independent with the realization of the EH
process, the transmission of symbols in a codeword is subject
to the energy available at the transmitter, which implies that a
portion of the codeword may be erased due to the stochastic
energy supply. In the nonasymptotic regime, such erasures
are not negligible, and inevitably lead to certain rate loss.
Compared with the same channel with equal average power
constraint, our purpose is to analytically characterize the rate
loss caused by the fluctuations of the EH process.

For the analytical tractability, we assume the physical layer
is a noiseless binary channel, and the energy harvesting
process is i.i.d. from slot to slot. We assume the transmission
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Fig. 1: EH communication system

of symbol 1 causes one unit of energy while the energy cost
for the transmission of symbol 0 is zero. Assume the average
EH rate is p, 0 < p < 1/2. In order to match the capacity of
the channel without energy variability in the asymptotically
regime, we adopt the random coding strategy with symbols
generated according to an i.i.d Bernoulli process with param-
eter p. We then analyze the statistics of the transmitted symbols
for a random codeword. Due to the coupling of the energy
constraints, erasures of the codeword during the transmission
do not happen in an i.i.d fashion, and this makes the analysis
complicated. Exploiting tools from stochastic processes and
probability theory, we are able to explicitly characterize the
distribution of the number of erasures during the transmission.
We then propose a simple decoding strategy, based on which
we explicitly calculate an lower bound on the maximize size of
the codebook in order to achieve an average error probability
✏ with a finite blocklength n, which leads to a lower bound
on the maximum achievable rate for the channel.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a noiseless binary channel with an energy har-
vesting transmitter. When a channel input symbol, namely 0
or 1, is transmitted through the channel, the receiver gets the
same symbol. We assume the energy cost for the channel input
symbol 1 is one unit, while the energy cost for the channel
input symbol 0 is zero.

Energy arrives at the battery at each channel use and is
consumed for the transmission of channel input symbols. Let
E

i

be the amount of energy harvested in the i-th channel use.
We assume E

i

s are identically and independently distributed
(i.i.d) random variables with E

i

2 Z
+

and E[E
i

] = p. To
make the problem nontrivial, we assume p is less than 1/2.
We assume the statistics of the EH process are available at
the encoder beforehand, which utilizes such information to
construct a length-n codebook.

Since the encoding step does not depend on the instanta-
neous battery level at each channel use, transmitting symbols
in a codeword may not always be feasible. Let X

i

be the
intended input symbol at the i-th channel use, X 0

i

be the
actual input symbol and Y

i

be the output symbol in the same
channel use. Then, when X

i

= 0, X 0
i

= Y
i

= 0; when
X

i

= 1 and there exists at least a unit of energy in the battery,
X 0

i

= Y
i

= 1; otherwise, X 0
i

= Y
i

= 0, i.e., the corresponding
symbol of the codeword is erased at the receiver.

Let B
i

be the battery level at the beginning of the i-th
channel use. We assume the size of the battery is sufficiently
large such that energy overflow never happens. At each chan-
nel use, the transmitter first harvests energy and then transmits

a symbol. Then, the battery level evolves according to

B
i+1

= (B
i

+ E
i

�X
i

)

+, i = 1, 2, . . . (1)

where (x)+ = max{x, 0}. We assume B
1

= 0, i.e., the system
starts with an empty state. This is the worse case scenario
for the problem studied in this paper. Therefore, the results
obtained here are valid for any finite B

1

.
The encoder encodes M different messages into M length-

n binary sequences, denoted as x

1

,x
2

, . . . ,x
M

. Let y be
the output sequence from the channel corresponding to a
codeword input. Due to the energy constraint imposed by
the EH process, y is not equal to the input sequence in
general. The decoder then maps y to one of the M messages.
A decoding error happens if the decoder does not map y

to the message correctly. Given a fixed blocklength n, and
✏ 2 (0, 1), our objective is to characterize the maximum size
of the codebook, denoted as M⇤

(n,✏ ), such that the average
decoding error probability is upper bounded by ✏.

III. RANDOM CODING AND OUTPUT SEQUENCES

The achievability of our lower bound relies on a random
coding scheme and a distance based decoding scheme. In
this section, we first describe our random coding scheme and
analyze the statistics of the corresponding output sequences of
the channel under the stochastic energy constraint.

Specifically, let us generate M codewords with length n in-
dependently at random according to an i.i.d. Bernoulli process
with parameter p. To send message m 2 {1, 2, . . . ,M}, the
transmitter transmits x

m

. We are interested in characterizing
the mismatch between the received sequence y and x

m

. We
have the following theorem.

Theorem 1 Let {X
i

}1
i=1

be an i.i.d Bernoulli process with
parameter p, and {E

i

}1
i=1

be an i.i.d EH process with E[E
i

] =

p, and E[exp(↵E
i

)] continuously differentiable in a small
neighborhood of ↵ = 0. Let {Y

i

}1
i=1

be the corresponding
output sequence, and K

n

=

P
n

i=1

|X
i

�Y
i

|. Then, for almost
all realizations of {X

i

} and {E
i

}, we have

lim

n!+1

K
n

n
= 0 a.s.

The proof of Theorem 1 is provided in Appendix A. Due to
the coupling of energy constraints on the input symbols, the
output sequence {Y

i

} is no longer an i.i.d process. We first
define a renewable process embedded in the output sequence,
and then prove that the tails of its renewal frequency decay
exponentially as n increases, which leads to the convergence
in Theorem 1.

Theorem 1 indicates that for a very general class of EH
processes, randomly generating a codeword according to its
average EH rate leads to o(n) mismatches between {X

i

} and
{Y

i

}. Intuitively, when n is sufficiently large, the receiver
can still reliably decode the message regardless of those o(n)
mismatches. This is because a joint typicality based decoding
strategy is based on the laws of large numbers, which are
unaffected by o(n) alterations, as n goes to infinity.
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Besides the characterization of K
n

in the asymptotic regime,
we derive the characteristics of K

n

for any finite n, which is
summarized in the following theorem.

Theorem 2 Let V = Var(E
i

) + Var(X
i

). Then,

P[K
n

� �]  exp

✓
�c

1

(2� c
1

)

2c
2

V n
�2

◆

where c
1

 1 and c
2

� 1 are positive constants depending on
the characteristic of {E

i

}.

Corollary 1

E[K
n

]

n


s
⇡c

2

2c
1

(2� c
1

)

V

n
(2)

The proofs of Theorem 2 and Corollary 1 are given in
Appendix B.

Theorem 2 indicates that for any finite blocklength n, the
tails of the distribution of K

n

decay super exponentially. The
exponent depends on the EH process variability, as well as
the randomness of symbols in the codeword. This is because
both the energy arrivals and the input symbols are random,
and the occurrence of erasures depends on both of them.
Corollary 1 characterizes an upper bound on the expected
portion of infeasible symbols as a function of the blocklength,
which decays in O(1/

p
n). Since the average number of

erased symbols in a length-n codeword is on the order of
p
n,

in order to reliably distinguish two codewords at the receiver,
intuitively, the Hamming distance between them should be in
O(

p
n) as well. Such results will guide the codebook design

and the associated decoding rules, as discussed in the next
section.

IV. A LOWER BOUND ON THE ACHIEVABLE RATE

Before we proceed to characterize the achievable rate based
on random coding, we describe the decoding procedure at the
receiver, and analyze the conditions required for a reliable de-
coding. The maximum size of the codebook is then determined
to meet the average error probability requirements.

A. Decoding Rule

As we discussed in Section III, some symbols (1’s) in
the codebook may be erased during the transmission due to
the energy constraints, which introduces uncertainty on the
decoding. Define S

x

:= {i : x[i] = 1}, i.e., the set of indices
of symbol 1 in the sequence x. Assume the m-th message is
sent through the channel. Then, we have S

y

✓ S
xm .

However, due to the random erasures happening during the
transmission, two different codewords may end up with the
same output sequence, i.e., there may exist other codewords
x

m

0 6= x

m

satisfying S
y

✓ S
xm0 . To mitigate decoding error

caused by such cases, during the decoding, we restrict to the
codewords that are sufficiently close to y. Besides, in order to
analytically track the probability of such decoding error, we
focus on a subset of codewords, defined as follows.

Define

T n

�

= {x : x 2 {0, 1}n, |S
x

� np|  n�}

i.e., T n

�

is the set of typical sequences under the �-convention
generated according to Bernoulli(p) [8]. The value of � will
be decided later.

Then, the decoder declares that message m̂ was sent if and
only if there exists such a unique m̂ satisfying

x

m̂

2 T n

�

S
y

✓ S
xm̂ (3)

|S
xm̂\S

y

|  � (4)

(3) is a necessary condition for x

m̂

to be the codeword just
sent. The left hand side of (4) is the number of erasures if
x

m̂

was sent. We bound it by a constant � to ensure that the
received codeword does not deviate much from the declared
codeword. Based on the result in Corollary 1, intuitively, �
should be on the order of

p
n. The selection of �, as well as

the value of �, determines the probability of error, and affects
the codebook design.

B. Error Analysis

Assume m = 1 is sent. There are three error events:

E
0

:= {X
1

/2 T n

�

}
E
1

:= {|S
X1\SY

| > �}
E
2

:= {9m̃ 6= 1 : S
Y

✓ S
Xm̃ , |S

Xm̃\S
Y

|  �}

A decoding error happens if any of those events occurs, i.e.,
E := E

0

[ E
1

[ E
2

. We bound the probability of those error
events as follows. First, we note that

P[E
0

] = P
"�����

nX

i=1

X
i

� np

����� � n�

#
 2 exp

�
�2n�2

�
(5)

where (5) follows from the Hoeffding’s inequality [9]. Next,
P[E

1

] can be bounded directly according to Theorem 2. The
analysis of P[E

2

] is a bit complicated, and we summarize our
result as follows.

Lemma 1 Let p̄ = 1� p. Then,

P[E
2

\ Ec

0

\ Ec

1

]  (M � 1) exp

✓
� nH(p)� n� log(pp̄)

� � log
�2

n2

(p+ �)(p̄+ �)
+ 2� +O

✓
�2

n(p� �)
+

�2

n(p̄� �)

◆◆

The proof of Lemma 1 is provided in Appendix C. Since
P[E ] = P[E

0

[E
1

[E
2

]  P[E
0

]+P[E
1

]+P[E
2

\Ec

0

\Ec

1

], with
each individual error probability given, we are able to derive
the conditions under which the average probability of error is
upper bounded by ✏.

C. The Lower Bound

In order to make sure that average probability of error is
less than ✏, we need to select the parameters �, �, as well
as the size of the codebook M carefully. In order to bound
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P[E
0

], it requires that � = ⌦(1/
p
n). Similarly, to bound P[E

1

],
we must have � = ⌦ (

p
n). We choose � =

q
logn

n

, � =

l
p
n, where l =

q
� 2c2V log(✏/3)

c1(2�c1)
. Then, we have the following

lower bound.

Theorem 3 Let M⇤
(n,✏ ) denote the maximum size of a

length-n code over the energy harvesting noiseless binary
channel with average probability of error ✏ 2 (0, 1). Then,

1

n
logM⇤

(n,✏ ) � H(p)� l
lognp

n
+O

 r
logn

n

!

The proof of Theorem 3 is provided in Appendix D.
We note that as n goes to infinity, 1

n

logM⇤
(n,✏ ) ap-

proaches H(p), which is exactly the channel capacity of the
noiseless binary channel under an average power constraint p.
This coincides with the intuition that as the fluctuations of the
energy arrivals are averaged out when the blocklength goes
to infinity, and the energy constraints on individual symbols
essentially become an average power constraint.

In the finite blocklength regime, the backoff of the max-
imum channel coding rate from the channel capacity H(p)
scales in O(l lognp

n

), where l is a function of ✏ and the statistics
of the EH process. We point out that as the variance of
E

i

increases, the backoff increases as well, which implies
that the EH variability impacts the maximum achievable rate
negatively.

APPENDIX

A. Proof of Theorem 1

Based on B
i

, we define a renewal process, which renews
whenever B

i

+E
i

�X
i

= �1. Define ⌧
1

, ⌧
2

, . . . as the lengths
of the corresponding renewal intervals. Within each renewal
interval, B

i

+ E
i

� X
i

follows a random walk starting with
state 0 and finishes when it hits state �1 for the first time.
Define D := E

i

�X
i

, and

⇤(↵) = logE[exp(�↵D)] (6)

Then, ⇤(↵) is continuously differentiable in a small neigh-
borhood of ↵ = 0. We note that ⇤(0) = 0 and the Taylor
expansion of ⇤(↵) around 0 equals

⇤(↵) =
V

2

↵2

+ o(↵2

) (7)

where V := E[D2

] = Var(E
i

) + Var(X
i

).
Consider a “random walk” {⌦

k

}1
k=0

, which starts with 0
and increments with D. Denote the first �1-hitting time as .
Then, ⌦

0

= 0,⌦


= �1.
Define a Martingale process as {exp(�↵⌦

k

�⇤(↵)k)}1
k=0

,
where ↵ > 0 and ⇤(↵) is defined in (6). Based on the property
of Martingale processes, we have

E [exp(�↵⌦


� ⇤(↵))] (8)
= E[E . . . [E[exp(�↵⌦



� ⇤(↵))|⌦
�1

] . . .]|⌦
0

]] = 1

On the other hand, we have

E [exp(�↵⌦


� ⇤(↵))]

= E [1

<1 · exp(�↵⌦


� ⇤(↵))]

where 1

x

is an indicator function, and it equals one when x is
true. Let ↵ ! 0

+, then based on (7) and ⌦



= �1, we have

1 = E [I
<1] = P [ < 1]

i.e., the probability of hitting �1 in finite time is 1.
(8) implies that

E [exp(�⇤(↵))] = exp(�↵).

Let K
n

be the total number of renewal intervals up to time
slot n. For such K

n

i.i.d random walks with �1-hitting times
⌧
i

,

E
"
exp

 
�⇤(↵)

 
KnX

i=1

⌧
i

!!#
= exp(�K

n

↵),

Therefore, for any ✏ > 0, we have

P
"

K
nP

Kn

i=1

⌧
i

> ✏

#
= P

"
KnX

i=1

⌧
i

<
K

n

✏

#

 exp(�K
n

↵)

exp(�⇤(↵)Kn
✏

)

= exp

✓
�K

n

✓
↵� ⇤(↵)

✏

◆◆
(9)

Since ⇤(↵) = O(↵2

), ⇤(0) = 0, then, for any ✏ > 0, we can
always find a sufficiently small ↵

✏

to have ↵
✏

� ⇤(↵✏)

✏

> 0,
which ensures that the probability decays exponentially in K

n

.
According to Borel-Cantelli lemma [10], we have

lim

n!1

K
nP

Kn

i=1

⌧
i

= 0, a.s.

Since
0  K

n

n
 K

nP
Kn

i=1

⌧
i

,

we have lim

n!1
Kn
n

= 0 almost surely.

B. Proofs of Theorem 2 and Corollary 1

Under the assumption that E[exp(↵E
i

)] is continuously
differentiable in a small neighborhood of ↵ = 0, there must
exist a positive constant c

1

 1 such that ⇤(↵) is continuously
differentiable for ↵ 2 [0, c1

V

], and another constant c
2

� 1 such
that ⇤(↵)  c2V

2

↵2 for ↵ 2 [0, c1
V

]. Let ↵
�

=

�

n

c1
c2V

. Then,

P[K
n

� �] = P[⌧
1

+ ⌧
2

+ . . .+ ⌧
�

 n]

 exp(��↵
�

+ ⇤ (↵
�

)n) (10)

 exp

✓
��↵

�

+

c
2

V

2

↵2

�

n

◆
(11)

= exp

✓
�c

1

(2� c
1

)

2c
2

V n
�2

◆

where (10) follows from (9) by replacing K
n

, ✏ with � and
n/�, respectively, and (11) follows from the assumption that
⇤(↵)  c2V

2

↵2. The proof of Theorem 2 is complete.
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To prove Corollary 1, we note

E[K
n

] =

nX

i=1

P[K
n

� i] 
nX

i=1

exp

✓
�c

1

(2� c
1

)

2c
2

V n
i2
◆


Z 1

0

exp

✓
�c

1

(2� c
1

)

2c
2

V n
x2

◆
dx (12)

=

s
⇡c

2

V

2c
1

(2� c
1

)

n (13)

where (12) follows from the fact that exp
�
�i2
�
� exp

�
�x2

�

for x 2 [i � 1, i]. The result then follows by dividing both
sides of (13) by n.

C. Proof of Lemma 1

First, based on the union bound, we have

P[E
2

]  (M � 1)P[S
Y

✓ S
X2 , |SX2\SY

|  �] (14)

Thus,

P[E
2

\ Ec

1

]

 (M � 1)P[K
n

 �,S
Y

✓ S
X2 , |SX2\SY

|  �]

 (M � 1)P[|S
X1\SX2 |  �, |S

X2\SX1 |  �]

= (M � 1)

X

x2{0,1}n

P[|S
X1\SX2 |  �,

|S
X2\SX1 |  �|X

1

= x] · P[X
1

= x]

= (M � 1)

X

x2{0,1}n

⇣
P[|S

X1\SX2 |  �|X
1

= x]

· P[|S
X2\SX1 |  �|X

1

= x]

⌘
· P[X

1

= x] (15)

where (15) follows from the fact that when X

1

is fixed, the
distribution of X

2

over S
X1 and Sc

X1
are independent.

Next, we have

P[|S
X1\SX2 |  �|X

1

= x] = P
"
X

i2S
x

X

2

[i] � |S
x

|� �

#

 exp

⇢
�|S

x

|D
✓
1� �

|S
x

|

����p
◆�

(16)

where D(xky) = x log
⇣

x

y

⌘
+ (1 � x) log

⇣
1�x

1�y

⌘
, and (16)

follows from the Chernoff-Hoeffding theorem [9]. Similarly,

P[|S
X2\SX1 |  �|X

1

= x]  exp

⇢
�|Sc

x

|D
✓
1� �

|Sc

x

|

����p̄
◆�

By Taylor expansion, we have

D(1� xky)=� log y + x log x+ x


log

✓
y

1� y

◆
�1

�
+O(x2

)

Therefore,

� |S
x

|D
✓
1� �

|S
x

|

����p
◆

= |S
x

| log p� � log
�

|S
x

| � �

✓
log

p

p̄
� 1

◆
+O

✓
�2

|S
x

|

◆

� |Sc

x

|D
✓
1� �

|Sc

x

|

����p̄
◆

= |Sc

x

| log p̄� � log
�

|Sc

x

| � �

✓
log

p̄

p
� 1

◆
+O

✓
�2

|Sc

x

|

◆

In addition, based on the definition, for x 2 T n

�

, we have

n(p� �)  |S
x

|  n(p+ �)

n(p̄� �)  |Sc

x

|  n(p̄+ �)

The proof can thus be finished by putting those pieces
together.

D. Proof of Theorem 3

Let � = l
p
n, � =

q
logn

n

. Then, we have P[E
0

] = 2/n2,

P[E
1

] = exp

⇣
� c1(2�c1)l

2

2c2V

⌘
, and

P[E
2

\ Ec

0

\ Ec

1

]  (M � 1) exp

�
� nH(p) + l

p
n logn

+ c
3

p
n log n

�

where c
3

is some positive constant. Let

M = exp

⇣
nH(p)� l

p
n log n� (c

3

+ 1)

p
n logn

⌘
(17)

Then, P[E
2

\ Ec

0

\ Ec

1

]  exp(�
p
n log n). When n is

sufficiently large, we have P[E
0

] < ✏ /3, P[E
2

\Ec

0

\Ec

1

]  ✏/3.
Let l =

q
� 2c2V log(✏/3)

c1(2�c1)
, then P[E

1

] < ✏ /3. In summary, we
have P[E ] = P[E

0

[ E
1

[ E
2

]  ✏.
Therefore, for all sufficiently large blocklength n and ✏ 2

(0, 1), we can ways achieve a channel coding rate described in
Theorem 3 through the proposed random coding and decoding
scheme, which provides a lower bound for the maximum
achievable rate of the EH channel.
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