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Abstract—In this paper, we study the optimum estimation of a
continuous-time random process by using discrete-time samples
taken by a sensor powered by energy harvesting power sources.
The system employs a best-effort sensing scheme to cope with
the stochastic nature of the energy harvesting sources. The best-
effort sensing scheme defines a set of equally-spaced candidate
sensing instants, and the sensor performs sensing at a given
candidate sensing instant if there is sufficient energy available,
and remains silent otherwise. It is shown through asymptotic
analysis that when the energy harvesting rate is strictly less than
the energy consumption rate, there is a non-negligible percentage
of silent symbols due to energy outage. For a given average
energy harvesting rate, a larger sampling period means a smaller
energy outage probability and/or more energy per sample, but a
weaker temporal correlation between two adjacent samples. Such
a tradeoff relationship is captured by developing a closed-form
expression of the estimation MSE, which analytically identifies
the interactions among the various system parameters, such as the
ratio between the energy harvesting rate and energy consumption
rate, the sampling period, and the energy allocation between
sensing and transmission. It is shown through theoretical analysis
that the optimum performance can be achieved by adjusting the
sampling period and sampling energy such that the average energy
harvesting rate is equal to the average consumption rate.

Index Terms—Energy harvesting, stochastic energy sources,
optimum sampling, MSE

I. INTRODUCTION

In a wireless sensing system, energy is consumed during the

operations of both sensing and information transmission. Many

wireless sensors are expected to operate autonomously over an

extended period of time under extremely stringent energy con-

straints, and this necessitates the design of sensors powered by

devices that can harvest energy from the ambient environment.

However, the stochastic nature of the harvested energy imposes

formidable challenges on the designs of systems with energy

harvesting power sources.

The designs of energy harvesting sensing and communication

systems have attracted considerable interests. Many existing

works employ off-line scheduling methods, which identify the

optimum transmission scheduling based on full knowledge

of current and future energy arrivals [9], [1]. The off-line

scheduling methods are non-causal and thus cannot be applied

to practical systems. On-line scheduling methods, on the other

hand, use only the statistics of energy arrivals, and they can
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be formulated as stochastic dynamic programming problem

with high complexity [4]. Low complexity sub-optimum on-

line algorithms are presented in [4] and [6]. In both works, the

performance of all on-line scheduling policies is strictly worse

than that of the off-line scheduling.

Recently it has been shown that there is an asymptotic

equivalence between systems with stochastic and deterministic

energy sources, if and only if the average energy harvesting rate

is no less than the average energy consumption rate in systems

with infinite battery capacity [8], [10], [12]. Therefore, on-line

scheduling with stochastic energy sources can asymptotically

achieve the same performance as off-line scheduling. Specifi-

cally, it is shown in [8], [10] that the asymptotic equivalence can

be achieved with an on-line best-effort sensing policy, where

a sensing is performed at equally-spaced candidate sensing

instants whenever there is sufficient energy to do so, and

the sensor will remain silent otherwise. Best-effort sensing

with finite battery is studied in [11]. The above works only

consider the case when the ratio between the average energy

harvesting rate and consumption rate is no less than one. The

design and performance of systems with the energy harvesting-

consumption ratio less than one remains an open problem.

In this paper, we study the optimum designs of energy

harvesting sensing system when the energy harvesting rate is

no more than the energy consumption rate. The system tries to

reconstruct a time-varying wide-sense stationary (WSS) random

event by using discrete samples. The optimum sampling of

a random field is a classical problem and has been studied

extensively in the literature [5], [3]. It is shown that uniform

sampling can achieve the optimum performance for a wide

range of kernel covariance functions [3], [7]. However, uniform

sampling is in general infeasible in energy harvesting systems

due to possible energy outage. To cope with stochastic energy

sources, we adopt the best-effort sensing policy [8].

When the energy harvesting-consumption rate is less than

one, it is shown through asymptotic analysis that there is a non-

negligible probability of energy outage at candidate sensing

instants, and the outages will significantly degrade system

performance. Intuitively, for a given average energy harvesting

rate, we can reduce the energy outage probability by either

increasing the sampling period or reducing the energy allocated

for each sample. However, a larger sampling period means

weaker sample correlation; lower energy per sample results in

a lower signal-to-noise ratio (SNR). Thus it is critical to strike

a balance among energy outage, sample correlation, and SNR
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to achieve the optimum performance. We capture the tradeoff

relationship by developing a closed-form expression of the

estimation MSE, which analytically identifies the interactions

and impacts of various system parameters, such as the energy

harvesting-consumption ratio, the sampling period, and the ratio

between energy allocated to sensing and transmission. It is

shown analytically that the optimum performance is achieved

when the energy harvesting-consumption ratio is one, and this

can be achieved by adjusting the sampling period and energy

per sample under a given energy harvesting rate. On the other

hand, the performance degrades when the energy harvesting-

consumption ratio is less than one, and the rate of degradation

depends on the sampling period.

II. SYSTEM MODEL

Consider a sensor used to monitor a WSS time-varying

random event. The sensor is powered by an energy harvesting

device. The harvested energy can be modeled as a random

process. We have two assumptions regarding the stochastic

energy model:

Assumption 1: If we divide the time axis into arbitrary

small intervals with length ∆ > 0, then the energy collected in

each interval can be modeled as independently and identically

distributed (i.i.d.) random variables, E∆, with mean P∆, where

P is the average harvesting power.

Assumption 2:
∑∞

n=1 P (E∆ > nǫ) < ∞ for any ǫ > 0 and

∆ > 0.

Such a model is general enough to incorporate many other

existing stochastic energy models, such as Poisson energy

source [4] and Bernoulli energy source [2], as special cases.

The harvested energy is stored in an energy storage device,

such as rechargeable batteries or super capacitors. Since the

harvested energy is usually very small compared to the capacity

of the energy storage device, it is assumed that the energy

queue has unlimited capacity [8], [10], [12]. Denote the amount

of energy available in the energy storage device at time t as

Q(t) ≥ 0. The energy consumption must follow the energy

causality constraint, that is, at any time instant, the total amount

of harvested energy must be no less than the total amount of

consumed energy.

The time-varying event being monitored is modeled as a

WSS random process s(t), where t is the time variable. It

is assumed that s(t) is zero mean with a covariance function

Rss(t) = Rss(t2 − t1) = E[s(t1)s(t2)] = ρ|t2−t1|, where

ρ ∈ [0, 1] is the power-law scaling coefficient, and E is

the mathematical expectation operator. The power law covari-

ance function is an alternative representation of the Ornstein-

Uhlenbeck covariance kernel [5].

The sensor attempts to reconstruct the continuous-time time-

varying random event by using noise-distorted discrete-time

observations of the random process. A sensing policy is defined

as a sequence of time instants {tn}n, where tn is the time

instant at which the sensor collects a sample of the random

process.

At a given time instant, the sensor collects a sample, and then

transmits it to a fusion center (FC), which tries to reconstruct

the continuous-time random event by using the collection of

discrete-time samples. Assume the sensing and transmission of

one sample consumes E0 joules of energy, where αE0 is used

for sensing and (1 − α)E0 for transmission, with α ∈ (0, 1)
being the energy allocation factor.

The sample collected by the sensor at time tn is

x(tn) =
√

αE0s(tn) + w(tn) (1)

where w(tn) is the sensing noise with a zero-mean and the auto-

covariance function E [w(t1)w(t2)] = σ2
wδ(t1− t2), and δ(t) is

the Dirac delta function. The sample x(tn) is first normalized

to unit energy by multiplying with 1√
αE0+σ2

w

. The sample is

then transmitted to the FC with energy (1 − α)E0, and the

signal observed at the FC is

y(tn) =

√

(1− α)E0

αE0 + σ2
w

x(tn) + v(tn), (2)

where v(t) is the channel noise with a zero-mean and variance

σ2
v . It should be noted that the sensing and channel noise

components are not necessarily Gaussian distributed.

The sensing system attempts to reconstruct the time-varying

random field, s(t), by using the sequence of the discrete-time

samples, {y(tn)}n.

III. STATISTICAL PROPERTIES OF ENERGY SOURCE

In this section, we study the asymptotic behaviors of the

best-effort sensing policy as time goes to infinity.

The best-effort sensing policy [8] is adopted to cope with

the stochastic nature of the energy source. For completeness,

the best-effort sensing policy is defined as follows.

Definition 1 (best-effort Sensing Policy). Define a set of can-

didate sensing instants as K = {kn|kn = nTs, n = 1, 2, · · · }.

A sensor performs one sensing operation with energy E0 at

time t if and only if: 1) t ∈ K, and 2) Q(t) ≥ E0.

In the best-effort sensing policy, the sensor attempts to mimic

uniform sampling with its best efforts. It tries to perform sens-

ing operations at uniform sensing intervals whenever allowed

by the energy constraint. However, it will keep silent at a

candidate sensing instant nTs if Q(nTs) < E0. Denote the

information collected at each candidate sensing instant as a

sensing symbol, which could be either a silent symbol when

Q(nTs) < E0 or an active symbol when Q(nTs) ≥ E0. With

such a sensing mechanism and the stochastic energy source,

there might be K silent symbols in the first N ≥ K sensing

instants Ts, 2Ts, · · · , NTs. The number of silent symbols is a

random variable. The existence of silent symbols might degrade

the sensing performance.

Definition 2. Based on the best-effort sensing policy in Def-

inition 1, the energy harvesting-consumption ratio is defined

as

q =
PTs

E0
(3)
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where P is the average energy harvesting rate.

It has been shown in [8] that the best-effort sensing policy

can asymptotically achieve the same performance as uniform

sensing, if and only if the average energy harvesting rate is no

less than the average energy consumption rate, that is, q ≥ 1.

In this paper, we are interested in the case that q ≤ 1. When

q ≤ 1, it is expected that the performance of systems with

stochastic energy sources will be worse than their counterparts

with deterministic energy sources. The performance loss will

be quantified through asymptotic analysis.

Theorem 1. Consider an energy harvesting sensing system with

energy source satisfying Assumptions 1 and 2, and it employs

the best-effort sensing policy described in Definition 1. Define

K =
∑N

k=1 1Q(kTs)<E0
as the total number of silent symbols

in the first N symbol periods, where the indicator function

1E = 1 if the event E is true and 0 otherwise. If the energy

harvesting-consumption ratio satisfies q ≤ 1.

lim
N→∞

K

N
= 1− q, a.s. (4)

where q = PTs

E0

is the energy harvesting-consumption ratio.

The results in Theorem 1 indicates that, as time goes to

infinity, the probability of silent sensing symbol due to energy

outage is equal to one minus the energy harvesting-consumption

ratio q. Therefore, as q < 1, there is a non-diminishing

number of silent symbols, and they might significantly degrade

the system performance. The results hold for a quite general

category of energy harvesting processes.

IV. ASYMPTOTICALLY OPTIMUM SENSING WITH THE

BEST-EFFORT SENSING POLICY

This section studies the optimum design and performance

analysis of sensing systems employing the best-effort sensing

policy with the energy harvesting-consumption ratio q ≤ 1.

A. Optimum Receiver

We can use a sequence of indicator variables, λn, to dis-

tinguish between active and silent sensing symbols. That is,

λn = 1 if a sample is collected and transmitted at nTs, and

λn = 0 otherwise. Based on the results in Theorem 1, as n

becomes large enough and q ≤ 1, λn can be modeled as i.i.d.

RVs with Pr(λn = 1) = q and Pr(λn = 0) = 1 − q. The

following analysis is based on the assumption that n is large

enough such that the system enters steady state.

With the best-effort sensing policy, the sensing sample at

time instant nTs can be represented as λnsn, where sn =
s(nTs). From (1) and (2), the signal observed by the FC at

nTs is

yn =

√

α(1− α)

αE0 + σ2
w

E0λnsn +

√

(1− α)E0

αE0 + σ2
w

λnwn + vn, (5)

= Aλnsn + zn (6)

where wn = w(nTs), vn = v(nTs), A =
√

α(1−α)
αE0+σ2

w

E0, and

zn =
√

(1−α)E0

αE0+σ2
w

λnwn+vn. Since the FC does not know which

symbol is silent or active, it will still observe the noise zn
during a silent symbol. The variance of zn is

σ2
z =

(1− α)E0

αE0 + σ2
w

qσ2
w + σ2

v . (7)

The FC tries to reconstruct s(t) by using {yn}n. Here

we consider the worst case scenario by estimating {dn ,

s
(

nTs +
1
2Ts

)

}n, the sequence of points located in the middle

between two candidate sensing instants. It should be noted

that s
(

nTs +
1
2Ts

)

will be estimated even if λn = 0 and/or

λn+1 = 0.

The linear minimum mean squared error (MMSE) estimation

of dn based on {yn}n is

d̂n =

∞
∑

k=−∞

hkyn−k, (8)

where {hk}k is the impulse response of the MMSE filter.

Based on the orthogonal principle, E
[

(d̂n − dn)ym

]

= 0,

we have

∞
∑

k=−∞

hkryy(n− k) = rdy(n) (9)

where ryy(n) = E[y(m + n)y(m)] and rdy(n) = E[d(m +
n)y(m)].

From (6), we have

rdy(n) = Aqrds(n) (10)

ryy(n) = A2q2rss(n)(1 − δn) +
[

A2q + σ2
z

]

δn (11)

where rds(n) = E[s(t+nTs+
1
2Ts)s(t)] = ρ|n+

1

2
|Ts , rss(n) =

E[s(t + nTs)s(t)] = ρ|n|Ts , δn = 1 if n = 0 and δn = 0
otherwise.

Converting (9)-(11) into the frequency domain with discrete-

time Fourier transform (DTFT), we have

H(f) =
AqRds(f)

A2q2Rss(f) + [A2q(1 − q) + σ2
z ]

(12)

where Rds(f) and Rss(f) are the DTFTs of rds(n) and rss(n),
respectively.

Based on (12), the filter coefficients {hk}k can be obtained

as the inverse DTFT of H(f).

We have the following results regarding the mean squared

error (MSE), σ2
e = E

[

(dn − d̂n)
2
]

.

Theorem 2. Consider the sensing system defined in (6). With

the linear MMSE receiver given in (9) and (12), the MSE for

estimating dn is

σ2
e =

(

C +
1− ρTs

1 + ρTs

)

1

2
(

C +
1 + ρTs

1− ρTs

)− 1

2

. (13)

1136



where

C =
1

q
− 1 +

1

αγwTs
+

1

q(1 − α)γvTs
+

1

α(1 − α)γvγwT 2
s

(14)

with γw = P
σ2
w

, γv = P
σ2
v

, and q = PTs

E0

∈ (0, 1].

In Theorem 2, the MSE is expressed as a function of three pa-

rameters: the energy allocation factor α, the energy harvesting-

consumption ratio q, and the sampling period Ts. These three

parameters feature the tradeoff among energy harvesting and

consumption, and they can be optimized to minimize the MSE.

B. Optimum System Design

Define g(x) = 1+ρTs

1−ρTs
. The MSE given in (13) depends on

both C and g(Ts), and they play two opposite roles on the

MSE. The MSE depends on q and α solely through C.

Corollary 1. The MSE given in (13) is a decreasing function

in q ∈ (0, 1].

The result in Corollary 1 indicates that given Ts and α, the

MSE can be minimized by setting q = 1, that is, the energy

harvesting-consumption ratio is 1 such that the probability of

energy outage is 0. This can be achieved either by increasing

the sampling period Ts, or reducing the energy per sample E0,

such that the average energy harvesting rate is no less than

the average energy consumption rate in the best-effort sensing.

It should be noted that increasing Ts or reducing E0 might

degrade system performance. Thus it is important to find the

best trade-off among the various parameters.

On the other hand, when q < 1, the result in Theorem 2

quantifies the performance loss due to non-negligible energy

outage caused by energy harvesting sources.

Corollary 2. Given Ts and q, the energy allocation factor that

minimizes the MSE given in Theorem 2 is

α∗(q, Ts) =

{ √
(1+γvTs)(1+γwTs/q)−(1+γvTs)

γwTs/q−γvTs

, γw 6= qγv

0.5, γw = qγv
(15)

From Corollary 1, the optimum q that minimizes σ2
e is

1, for all α and Ts. From Corollary 2, the optimum α that

minimizes σ2
e is given in (15). Thus the optimum system can

be achieved by setting q = 1 and α = α∗(1, Ts) in (13), and

then minimizing the equation with respect to Ts.

Setting q = 1 and α = α∗(1, Ts) in (13) yields

σ2
e(Ts) =

[

f(Ts) + g−1(Ts)
]

1

2 [f(Ts) + g(Ts)]
− 1

2 (16)

where g(x) = 1+ρx

1−ρx and

f(x) =
1

α∗(1, x)γwx
+

1

[1− α∗(1, x)]γvx
+

1

α∗(1, x)[1 − α∗(1, x)]γvγwx2
(17)

The function f(x) can be interpreted as the inverse of the

effective SNR. Given P and q = 1, a larger Ts means a

higher E0, thus a higher SNR, which will decrease the MSE.

The function g(x) is determined by the correlation among

samples. A larger Ts means a weaker sample correlation, which

negatively contributes to the MSE performance.

Corollary 3. The optimum Ts that minimizes the MSE is in the

set T ∗
s ∈ {0} ∪ {x|u(x) = 0}, where

u(x) = f ′(x) − log ρ− f(x) log ρ
1 + ρ2x

1− ρ2x
(18)

The optimum sampling period can be solved with Corollary

3, and the optimum T ∗
s can then be used in Corollary 2 to obtain

the optimum energy allocation factor α∗(1, T ∗
s ). Our numerical

results indicate that there is only one solution to u(x) = 0 for

all configurations considered in this paper.

V. NUMERICAL AND SIMULATION RESULTS

Fig. 1 shows the value of K
N as a function of N for systems

with Poisson or Bernoulli energy sources, where K is the

number of silent sensing symbols and N is the total number

of candidate sensing symbols. All systems employ the best-

effort sensing policy. The simulation results are obtained by

averaging over 100 independent runs for each configuration.

Both energy sources have similar convergence behaviors as N

increases. For all configurations, the values of K
N converge to

1 − q as predicted in Theorem 1. The ratios converge to their

respective limits as N > 300.

Fig. 2 shows the MSE as a function of the energy allocation

factor under various system configurations. In all subsequent

simulations, we have γw = 10 dB and γv = 3 dB. The

power law scaling coefficient is ρ = 0.9. From the results, the

MSE is convex in α. The optimum α∗(q, Ts) from Corollary

2 are marked as ‘x’ on the curves, and they match the values

of α that minimize σ2
e . Given α and Ts, the MSE decreases

monotonically as q increases. In addition, it is apparent that

the sampling period Ts has significant impact on the MSE

performance. The performance of the system with q = 0.4
and Ts = 0.5 is better than that of the system with q = 1 and

Ts = 0.05.
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Fig. 1. The percentage of silent sensing symbols for various energy sources.
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The impact of energy harvesting-consumption ratio, q, on the

MSE is shown in Fig. 3. The energy allocation factors in all

cases are the optimum values from Corollary 2. As predicted

in Corollary 1, the MSE decreases monotonically with q, but

with different slopes. For the same ρ, the Ts that renders a

smaller MSE has a steeper slope. Therefore the gap between

two systems with different values of Ts increases as q increases.

Fig. 4 demonstrates the impacts of Ts on σ2
e , with the

optimum α∗(q, Ts) and under different values of q. For all

configurations, the MSE is quasi-convex in Ts with a single

zero-slope point. The optimum Ts that minimizes the MSE is

thus the unique solution of u(x) = 0 as shown in Corollary 3.

As q increases, the optimum T ∗
s becomes larger.

VI. CONCLUSIONS

This paper has studied the optimum sensing of a time-

varying random event with energy harvesting power sources. It

has been shown that the energy harvesting-consumption ratio

plays a critical role on system performance, and the optimum

performance is achieved when this ratio is one. When the

energy harvesting-consumption ratio is strictly less than one,
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Fig. 4. The MSE as a function of the sampling period Ts under optimum
energy allocation.

there is always a non-negligible probability of energy outage,

which results in performance degradation. With asymptotic

analysis, the estimation MSE has been expressed as a closed-

form expression of several important design parameters, and the

performance is optimized by striking a balanced tradeoff among

the sampling period, the energy harvesting-consumption ratio,

and the energy allocation factor. The results are general enough

to include a wide range of energy harvesting sources.
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