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Abstract—In this paper, we consider an energy harvesting mul-
tiple access channel (MAC) where the transmitters are powered
by energy harvested from the ambient environment. We assume
that the energy harvesting processes at the transmitters can be
modeled as independent Bernoulli processes with parameters
λis, and the channel states between the transmitters and the
receiver are independent Bernoulli processes with parameter µis.
An active transmitter always transmits with a fixed power and
consumes one unit amount of energy in a time slot. Under the
assumption that µi ≥ λi, ∀i, our objective is to schedule the
transmissions adaptively according to the instantaneous channel
and battery states of transmitters, so that the long-term average
sum-throughput of the MAC is maximized in expectation. We
first show that for a general asymmetric scenario where λis
and µis are not identical across the transmitters, the expected
long-term average sum-throughput has an upper bound for any
transmission scheduling policy satisfying the energy causality
constraints. We then consider a special symmetric scenario
where λis and µis are uniform among transmitters. We propose
a randomized longest-connected-queue transmission scheduling
policy and show that it achieves the upper bound almost surely
as time T approaches infinity, thus it is optimal.

Index Terms—energy harvesting, multiple access channel,
scheduling

I. INTRODUCTION

In order to build a self-sustainable wireless sensor network,
powering sensor nodes with energy harvesting devices be-
comes a natural and feasible solution, thanks to the recent
progress on energy harvesting technology. However, utilizing
the random, scarce and non-uniform harvested energy adap-
tively to meet the energy demand from collecting and trans-
mitting vast amounts of data in such networks is extremely
challenging, and requires a completely different approach to
energy management.

In this paper, we focus on the design of an online transmis-
sion scheduling policy for an energy harvesting multiple access
channel (EH-MAC) with fading. Our objective is to maxi-
mize the long-term average sum-throughput through activating
transmitters adaptively according to their channel states and
battery levels in each time slot. We assume that energy arrives
at individual transmitters according to independent Bernoulli
processes with parameters λis, and an active transmitter al-
ways transmits with a fixed power and consumes one unit
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amount of energy in a time slot. Due to different channel states
between the transmitters and the receiver, active transmitters
may have different impacts on the sum-throughput in one
transmission, which makes the problem very complicated.
In order to make the problem tractable, as a first step, we
assume that the channel states between the transmitters and the
receiver are independent Bernoulli processes with parameters
µis. The stochastic nature of the energy harvesting processes
and the randomness of the channel states make the optimal
transmission scheduling non-trivial. We first consider a general
asymmetric setup where λis and µis are not identical among
the users. Under the assumption that µi ≥ λi, ∀i, the expected
long-term average sum-throughput has an upper bound for any
transmission scheduling policy satisfying the energy causality
constraints. We then consider a symmetric scenario where
λis and µis are uniform among transmitters, and propose a
randomized longest-connected-queue transmission scheduling
policy. The policy achieves the upper bound almost surely as
time T approaches infinity, thus it is optimal.

Throughput maximization in EH-MAC has been studied
recently under various settings. In [1], a generalized backward
waterfilling method is proposed to maximize the throughput
region of a two-user EH-MAC under an offline setting. [2]
investigates the offline sum-rate maximization problem for an
N -user EH-MAC with fading and formulate it as a convex op-
timization problem, which is then solved by a low-complexity
iterative dynamic water-filling algorithm. Offline throughput
maximization with energy cooperation for EH-MAC has been
studied in [4], [5]. Under an online setting, [3] studies a similar
long-term average sum-throughput maximization problem in
the continuous time regime with variable transmission power.
The problem is formulated as partial integro-differential equa-
tions and solved by an iterative algorithm. [6]–[9] formulate
the online throughput maximization problem for frequency-
division EH-MAC as partially observable Markov decision
processes (POMDP), under the assumption that the instanta-
neous states of the nodes’ batteries are not available at the
central controller.

Our setup is different from the previous work [1]–[9], as we
consider a discrete-time online setting, and the instantaneous
battery states of the transmitters are available at the central
controller. The proposed queue-length based scheduling policy
has a similar structure as the longest-connected-queue server
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allocation policies studied in [10], [11], however, it is also
significantly different from them. First, we do not have re-
strictions on the number of active transmitters in each slot.
The thresholding structure of our proposed policy is due to
the properties of the sum-rate function of the multiple-access
channel, rather than a hard constraint assumed in the system
model. Second, the Lyapunov technique adopted in such work
requires the incoming traffic rate vector to be strictly inside the
network capacity in order to stabilize the system. However, the
large deviation theory and sample path wise analysis adopted
in this work do not have such requirement. The proposed ran-
domized longest-connected-queue policy stabilizes the energy
queues even if the energy harvesting rate λi is exactly equal to
the probability that a transmitter is connected to the receiver in
a slot, i.e., µi. Thus, our proposed policy provides a stronger
system stability guarantee in this sense.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this paper, we consider a multiple access channel con-
sisting of N transmitters and a receiver, as shown in Fig. 1.
Transmitters are powered by energy harvested from the ambi-
ent environment. Each transmitter is equipped with an infinite
battery to store the harvested energy.

The channel from the transmitters to the receiver is additive
white Gaussian noise (AWGN), i.e., Y =

∑N
i=1

√
hiXi + Z,

where Y is the received signal at the receiver, Xi is the
transmit signal of transmitter i, hi is the fading coefficient
for the channel between transmitter i and the receiver, and Z
is the Gaussian noise with zero-mean and unit-variance.

We consider a time-slotted system. In time slot t, a trans-
mitter may transmit with a fixed power level P , or keep silent.
We assume the energy is normalized so that exactly one unit
amount of energy is spent in each slot for an active transmitter.
We denote the subset of active transmitters in slot t as Ct.

Considering a block-fading channel where the fading coef-
ficients stay the same in each time slot, the sum-rate of the
MAC in each slot t thus must satisfy

N∑
i=1

Ri(t) ≤
1

2
log

(
1 +

∑
i:i∈Ct

hi(t)P

)
:= f (Ct,ht) (1)

where Ri(t) is the transmission rate of transmitter i in time
slot t, hi(t) is the corresponding fading coefficient, and ht :=
[h1(t), h2(t), . . . , hN (t)].

Let Ei(t) denote the amount of energy remaining in the
battery of node i at the beginning of time slot t, Ai(t) be
the amount of harvested energy at node i during slot t. For
every sensor node i, we assume the energy arrival process
is a Bernoulli process with parameter λi, 0 ≤ λi ≤ 1, i.e.,
E[Ai(t)] = λi. The arrival processes are independent and may
not be identical across sensors. Assume the system starts with
an empty state. Then, the energy queue evolves according to

Ei(0) = 0,∀i
Ei(t+ 1) = Ei(t)− 1i∈Ct +Ai(t), t = 0, 1, 2, . . . ,∀i (2)
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Fig. 1: An energy harvesting multiple access channel.

where 1x is an indicator function, i.e., it equals one if x is true,
and it equals zero otherwise. Since an observation cannot be
made if Ei(t) < 1, we impose the following energy constraint

Ei(t) ≥ 1i∈Ct , ∀i, t. (3)

Assuming the statistics of the energy harvesting processes
are known at a central controller, our objective is to design
an online transmission scheduling {Ct}∞t=1, such that the
expected long-term average sum-throughput is maximized.
The optimization problem can be formulated as

max
{Ct}

lim inf
T→+∞

E

[
1

T

T∑
t=1

f(Ct,h)

]
s.t. (2)(3) (4)

where the expectation in the objective function is taken with
respect to all possible energy harvesting sample paths. The op-
timization problem in (4) is stochastic and has a combinatorial
nature, and in general does not admit a closed-form solution.

In order to make the problem analytically tractable, as a first
step, we assume that {hi(t)}∞t=1 is an independent Bernoulli
process with parameter µi. When hi(t) = 1, we say that
transmitter i is connected to the receiver in slot t; otherwise,
it is disconnected. In this case, even if i ∈ Ct, it does not
contribute to the sum-throughput. Based on such assumptions,
we can simplify f(Ct,h) as f(|C∗t |), where

C∗t := {i|i ∈ Ct, hi(t) = 1}. (5)

In the following, we first analyze the optimization problem
and provide an upper bound on the objective function for
general λi and µi. We then consider a special symmetric
scenario where λi = λ and µi = µ, ∀i, and propose a
randomized longest-connected-queue policy to achieve the
upper bound.

III. AN UPPER BOUND ON THE OBJECTIVE FUNCTION

Define pk as the probability that there exist exactly k
connected transmitters in a time slot, i.e.,

pk := P

[
N∑
i=1

hi(t) = k

]
(6)

and

g(k) := E

[
min

(
N∑
i=1

hi(t), k

)]
(7)
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Then, we have the following lemma.

Lemma 1 Under the assumption that λi ≤ µi, ∀i, there must
exist an integer K and a q, 0 < q ≤ 1, s.t.

g(K)(1− q) + g(K + 1)q =

N∑
i=1

λi (8)

i.e.,
K∑
i=1

pii+

(
N∑

i=K+1

pi

)
(K + q) =

N∑
i=1

λi (9)

Proof: Based on the definition of g(k) in eqn. (7), we have

g(k) =

k−1∑
i=1

pi · i+

N∑
i=k

pi · k (10)

We note that g(k) is monotonically increasing in k, with
g(0) = 0 and g(N) =

∑N
i=1 µi ≥

∑N
i=1 λi. Thus, there must

exist a K such that

g(K) <

N∑
i=1

λi, g(K + 1) ≥
N∑
i=1

λi. (11)

which implies (8) and (9). �

Definition 1 A transmission scheduling policy {Ct}∞t=1 is fea-
sible if Ei(t) ≥ 1, for every i ∈ Ct, ∀t, i.e., the energy causality
constraint (3) is always satisfied for every i, t.

Lemma 2 Under any feasible transmission scheduling policy,

lim sup
T→+∞

1

T

T∑
t=1

1i∈C∗t ≤ λi (12)

almost surely for all i, where C∗t is defined in (5).

The proof of Lemma 2 is based on the energy queue evolution
described in (2) and the strong law of large numbers, and it
is omitted for the brevity of the presentation.

Lemma 3 The objective function in (4) is upper bounded as

max
{Ct}

lim inf
T→+∞

E

[
1

T

T∑
t=1

f(|C∗t |)

]

≤
K∑
k=1

pkf(k) +

(
N∑

k=K+1

pk

)
[(1− q)f (K) + qf (K + 1)] ,

where C∗t , pk, q, and K are defined in (5), (6), and Lemma 1,
respectively.

The proof of Lemma 3 relies on Lemma 1 and Lemma 2,
and is omitted due to space limitation. The upper bound
suggests a threshold on the active connected transmitters in
each time slot, i.e., |C∗t | should not exceed K + 1 in any time
slot. Besides, the portion of time that |C∗t | = k, 1 ≤ k < K
should equal to pk, which by definition is the probability that

k transmitters are connected to the receiver. This implies that
if less than K transmitters are connected in a slot, then all
of the connected transmitters should transmit, as if no energy
constraints were imposed at them. Besides, the portion of time
that |C∗t | = K or K + 1 should be carefully chosen, so that
the long-term average of |C∗t | is exactly

∑N
i=1 λi.

We note that in this upper bound, the energy causality
constraints in (2)(3), even the long-term energy harvesting rate
constraint on individual transmitters in (12), are not explicitly
involved. The upper bound only depends on the sum of the
energy harvesting rates

∑N
i=1 λi. This is equivalent to replace

the original sample-path wise energy causality constraints with
a more relaxed sum-power constraint instead. Thus, the ques-
tion is: can the upper bound be achieved under the sample-path
wise energy causality constraints for individual transmitters?
and if so, how the transmissions should be coordinated, so
that the EH-MAC asymptotically behaves like a MAC under
equivalent sum-power constraint as T →∞?

The answers to those questions are not straightforward. In
the next section, we study a special symmetric scenario, and
show that the upper bound can indeed be achieved.

IV. OPTIMAL POLICY IN A SYMMETRIC SCENARIO

In this section, we consider a special symmetric scenario
where λi = λ, and µi = µ, ∀i. For a MAC with identical
energy harvesting and channel statistics for all transmitters,
intuitively, balanced energy queue lengths are desirable. This
is due to the fact that any queue can be equally likely to be
among the k, k < K connected queues in a future slot. In order
to have all connected queues transmit in this case, they must
have sufficient energy. Thus, balancing energy queue lengths
as much as possible minimizes the battery outage probability
of a connected queue. Motivated by this intuition, and the
upper bound in Lemma 3, we propose a randomized longest-
connected-queue policy as follows.

Definition 2 (Randomized Longest-Connected-Queue Policy)
In time slot t, if

∑N
i=1 hi(t) ≤ K, all connected transmitters

with sufficient energy will transmit; If
∑N
i=1 hi(t) > K,

sort all of the connected transmitters by their energy queue
lengths in a descending order, and let ρt be an i.i.d random
variable taking value K + 1 with probability q and K with
probability 1− q. Then, the first ρt transmitters will transmit
in time slot t if they have sufficient energy.

Apparently, the randomized longest-connected-queue policy
always provides a feasible transmission scheduling. With a
little abuse of notation, we use ρt to denote be the desired
number of active transmitters in each time slot t. Specifically,
if
∑N
i=1 hi(t) ≤ K, ρt =

∑N
i=1 hi(t); if

∑N
i=1 hi(t) > K,

ρt = K + 1 with probability q, and ρt = K with probability
1− q.

Theorem 1 In the symmetric scenario, the randomized
longest-connected-queue policy achieves the upper bound on
the long-term sum-throughput in Lemma 3 almost surely.
Therefore, it is optimal.
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Corollary 1 Under the randomized longest-connected-queue
policy, for any sufficiently large T , we have

P

[
1

T

T∑
t=1

1|C∗t |6=ρt ≥ ε

]
≤ (T + 1)2 exp

(
− Tε2

32N4

)
(13)

The proof of Theorem 1 is provided in Appendix A. The-
orem 1 indicates that the long-term average sum-throughput
generated under the randomized longest-connected-queue pol-
icy converges to the upper bound, thus it is optimal. Corol-
lary 1 implies that in almost every time slot, we have |C∗t | =
ρt, i.e., as T →∞, the desired number of active transmitters
can always be fulfilled. The corresponding convergence rate
is explicitly characterized.

V. NUMERICAL RESULTS

In this section, we evaluate the performance of the proposed
randomized longest-connected-queue transmission scheduling
policy through simulations. We assume P = 1, σ2 = 1, thus
f(|C∗t |) = 1

2 log(1 + |C∗t |).
We first fix the number of transmitters in the system as

N = 20, the energy arrival rate λ = 0.3, and the probability
of a channel fading coefficient to be one as µ = 0.5 for every
transmitter. Calculations indicate that K = 6, q = 0.0298.
We then generate an energy harvesting sample path, and
perform the proposed scheduling policy. We keep track of the
total number of connected active transmitters (i.e., |C∗t |) under
the policy, and plot its empirical distribution over the first
400 time slots in Fig. 2. We compare it with the theoretical
distribution of ρt, i.e., the desired number of active transmitters
under the policy. The discrepancy between them indicates
that the desired number of active transmitter ρt has not been
fulfilled in some time lots due to energy causality constraints
at transmitters. However, the gap is not significant.

Then, we fix µ = 0.7, and vary the energy harvesting rate λ
to be 0.3 and 0.5, respectively. We calculate the corresponding
K and q for each setting, and evaluate the time average sum-
throughput under the proposed randomized longest-connected-
queue policy as a function of T . We generate 1,000 energy
harvesting sample paths, and plot the sample average of
1
T

∑T
t=1 f(|C∗t |) in Fig. 3. We use the vertical bars to represent

the 95% confidence intervals of the corresponding average
sum-throughput. The results indicate that for a majority of the
1000 sample paths, the time average sum-throughput generated
under the proposed policy converges to their corresponding up-
per limits quickly. When T is about 400, the gap between the
upper bounds and the sample average of the sum-throughput
becomes very small, which indicates the fast convergence rate
of the proposed transmission scheduling policy.

APPENDIX

A. Proof of Theorem 1

Since limT→∞
1
T

∑T
t=1 f(ρt) = E[f(ρt)] almost surely,

which equals the upper bound in Lemma 3, in order to prove
Theorem 1, it suffices to prove that under the randomized
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longest-connected-queue policy,

lim
T→∞

1

T

T∑
t=1

f(|C∗t |) = lim
T→∞

1

T

T∑
t=1

f(ρt), a.s. (14)

Thus, it suffices to prove that

lim sup
T→+∞

1

T

T∑
t=1

1|C∗t |<ρt = 0, a.s. (15)

For a given T , define A =
{∑N

i=1Ei(T ) > Tε
}

. If
∀ε > 0, and T is sufficiently large, we have P[A] decays
exponentially in T , then by Borel-Cantelli lemma [12], we
have P

[
lim supT→+∞

∑N
i=1Ei(T )/T > ε

]
= 0. This can

then be used to prove (15).
At each time slot t, we reorder Ei(t), i = 1, 2, . . . , N

according to their values, and denote E(i)(t) as the i-th largest
one among them. For a given T , we define T1 as the largest
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time index t, t ≤ T , such that E(N)(t) = 0, i.e., T1 is the
last time slot prior to T such that the shortest energy queue
is zero. Then, E(1)(T1) be the longest energy queue at T1.

We partition event A into two sets A1 := {E(1)(T1) <
Tε
2N } ∩A, and A2 :=

{
E(1)(T1) ≥ Tε

2N

}
∩A, and bound their

probabilities separately.

P [A1] ≤ P

[
N∑
i=1

Ei(T1) ≥ Tε

2
,

N∑
i=1

Ei(T ) > Tε

]
(16)

≤ P

[
N∑
i=1

[Ei(T )− Ei(T1)] >
Tε

2

]
(17)

≤
T−1∑
t1=1

P

[
T∑

t=T1+1

(
N∑
i=1

Ai(t)− ρt

)
>
Tε

2
, T1 = t1

]
(18)

≤ T exp

(
−2(Tε/2)2

TN2

)
= T exp

(
− Tε

2

2N2

)
(19)

where (16) follows from the definition of T1, (17) follows
from the triangle inequality, (18) follows from the fact that no
energy queue is empty over [T1 +1, T ], and (19) follows from
Hoeffiding’s inequality [13].

Next, we bound P[A2]. Since for A2, we have E(1)(T1) ≥
Tε
2N and E(N)(T1) = 0, there must exist an L such that

E(L)(T1)− E(L+1)(T1) ≥
E(1)(T1)

N − 1
≥ Tε

2N(N − 1)
(20)

Assume the energy queue indices at time T1 are (from the
longest to the shortest) l1, . . . , lL, lL+1, . . . , lN . Let T0 be the
smallest time index t, t ≤ T1, s.t. ∀t ∈ [T0, T1],

Ei(t) > Ej(t),∀i ∈ {l1, . . . , lL},∀j ∈ {lL+1, . . . , lN} (21)

Let i∗ be the shortest queue in {l1, l2, . . . , lL} at time T0, and
j∗ be the longest queue in {lL+1, . . . , lN} at time T0. Thus,
we must have

Ei∗(t) > Ej∗(t) ∀t ∈ [T0, T1] (22)

Based on the definition of T0, and the fact that an energy
queue length can only increase or decrease by at most one in
a single time slot, we have

Ei∗(T0)− Ej∗(T0) ≤ 2 (23)

On the other hand, (21) implies that

Ei∗(T1)−Ej∗(T1)≥EL(T1)−EL+1(T1)≥ Tε

2N(N − 1)
(24)

Conditional on (22), we consider a random process
{Ei∗(t)− Ej∗(t)}t∈[T0,T ]. We can show that it is a super
martingale, and the increment is always bounded by 2.

Thus,

P[A2] ≤ P[(22), (23), (24)] (25)

≤ P
[
∆ ≥ Tε

2N(N − 1)
− 2, (22)

]
(26)

≤
T∑

t1=1

t1∑
t0=1

P
[
∆ ≥ Tε

2N2
, T1 = t1, T0 = t0

∣∣∣∣(22)

]
(27)

≤ T (T − 1) exp

(
− Tε2

32N4

)
(28)

where ∆ := [Ei∗(T1)− Ej∗(T1)]− [Ei∗(T0)− Ej∗(T0)], and
(28) follows from Azuma-Hoeffding’s inequality.

Combining (19) and (28), we have

P[A] = P[A1] + P[A2] ≤ T 2 exp

(
− Tε2

32N4

)
(29)

when T is sufficiently large. Therefore,
∑N
i=1Ei(T )/T → 0

almost surely. This implies that limT→+∞
1
T

∑T
t=1 |C∗t | =

limT→+∞
1
T

∑T
t=0

∑N
i=1Ai(t). On the other hand, the strong

law of large numbers indicates that limT→+∞
1
T

∑T
t=1 ρt =∑N

i=1 λi almost surely. Thus, limT→+∞
1
T

∑T
t=1 |C∗t | =

limT→+∞
1
T

∑T
t=1 ρt almost surely, which implies (15) and

completes the proof.
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