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Abstract—This paper takes the impact of charging and
discharging operations on battery degradation into consider-
ation, and studies the optimal energy management policy for
an energy harvesting communication system under a battery
usage constraint. Specifically, in each time slot, we assume
the harvested energy can be used to power the transmitter
immediately without entering into the battery, or stored into
the battery for now and retrieved later for transmission.
Whenever the battery is charged or discharged, a cost will
be incurred to account for its impact on battery degradation.
We impose an long-term average cost constraint on the battery,
which is translated to the average number of charge/discharge
operations per unit time. The objective is to develop an online
policy to maximize the long-term average throughput of the
transmitter under energy causality constraint and the battery
usage constraint.

We first relax the energy causality constraint on the system,
and impose an energy flow conservation constraint instead.
We show that the optimal energy management policy has a
double-threshold structure: if the amount of energy arrives in
each time slot lies in between the two thresholds, it will be
used immediately without involving the battery; otherwise, the
battery will be charged or discharged accordingly to maintain a
constant transmit power. We then modify the double-threshold
policy slightly to accommodate the energy causality constraint,
and analyze its long-term performance. We show that the
system achieves the same long-term average performance, thus
it is optimal.

I. INTRODUCTION

The random and intermittent nature of harvested energy
imposes critical challenges on the design of sustainable
and reliable energy harvesting wireless sensor networks.
Rechargeable batteries are usually employed as an energy
buffer to filter out the fluctuations in the energy harvesting
process and maintain a continuous and stable energy output.
A large number of energy management schemes have been
proposed to optimize the performances of such systems.

Modeling the battery as an ideal energy buffer for energy
storage and retrieval, researchers have developed various en-
ergy management schemes to optimize different performance
metrics under infinite battery setting [1]–[3] and finite battery
setting [4]–[9]. The performance metrics include channel
capacity [3], transmission delay [1], throughput [4]–[6], etc.

However, modeling batteries as perfect energy buffers may
not be realistic, since battery operations involve very compli-
cated mechanisms, which lead to inevitable energy storage
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imperfections and battery degradation. In this context, some
works aim to take more practical battery characteristics into
the optimization framework, and investigate their impacts
on the optimal energy management policies and system
performances. In [10], the authors consider battery storage
imperfections where stored energy leaks in time, and the
battery degrades at the same time. An optimal throughput
maximization policy is proposed under an offline setting.
Reference [11] proposes a battery health model to capture
the dependency of battery degradation on its discharge depth,
and investigates degradation-aware policy to improve the
lifetime of the battery while guaranteeing the minimum
QoS requirement. The problem is casted into the framework
of Markov Decision Processes, and solved independently
for each health state by exploiting the timescale separation
between the communication time-slot and the battery degra-
dation process. [12] investigates the scenario where a portion
of energy is lost instantaneously when it enters the battery,
and proposes optimal offline transmission policies under
various settings. The optimal policy has a double-threshold
structure, where the battery charges/discharges when the
harvested energy is above/below the thresholds and transmits
with the corresponding threshold.

It has been shown that the battery lifetime is closely
related to its charge/discharge cycles. Frequent battery
charge/discharge operations result in irreversible battery ca-
pacity degradation and jeopardize its battery lifetime. In this
paper, we take the impact of charge/discharge operations on
battery lifetime into consideration, and study the optimal
energy management policy for an energy harvesting commu-
nication system under a battery usage constraint. Specifically,
in each time slot, we assume the harvested energy can be
used to power the transmitter immediately without entering
into the battery, or stored into the battery for now and
retrieved later for transmission. Besides the energy causality
constraints, we impose a battery cost constraint, which
is translated into the average number of charge/discharge
operations per unit time. The objective is to maximize the
long-term average throughput of the transmitter under energy
causality constraint and the battery usage constraint. We do
not consider battery degradation explicitly in this setup, as we
assume that the aging process happens over a time scale that
is much longer than the communication period we consider
about, and the battery storage capacity is always sufficiently
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large to prevent any energy overflow in our setting.
We first relax the energy causality constraint on the

system, and impose a long-term energy flow conservation
constraint instead. We show that the optimal energy manage-
ment policy has a double-threshold structure: if the amount
of energy arrives in each time slot lies in between the two
thresholds, it will be used immediately without involving the
battery; otherwise, the battery will be charged or discharged
accordingly to maintain a constant transmit power. We then
modify the two-threshold policy slightly to accommodate
the energy causality constraint, and analyze its long-term
performance. We show that the system achieves the same
long-term average performance, thus it is optimal.

Despite a similar double-threshold structure, our policy
is fundamentally different from that studied in [12] due to
different constraints we impose on the system. Essentially,
under the battery inefficiency assumption that a ratio of the
saved energy will be lost in [12], the amount of energy
to be saved in the battery is the key factor, which can be
identified by solving the standard convex optimization prob-
lem. While under the battery usage constraint, the number of
charge/discharge operations matters. Thus, our optimization
problem has a combinatorial flavor, which cannot be solved
straightforwardly via convex optimization. As a result, under
our policy, the transmitter always tries to equalize the trans-
mit power whenever it charges or discharges, while in [12],
the transmitter transmits with the corresponding thresholds.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a time slotted energy harvesting communication
system. Let At be the energy harvested from the ambient
environment in time slot t, t = 1, 2, . . . , T . Ats are i.i.d
random variables with known probability density function
(pdf) pA(·). Energy can be used to transmit data from a
backlogged buffer, or stored in a battery for later use, as
shown in Fig. 1. Let Bt be the amount of energy that enters
the battery in time t, and Ct be the remaining amount from
At. Then,

At = Bt + Ct (1)

Let Dt be the energy drawn from the battery in time t. The
total amount of energy used for transmission in time slot t is
then equal to Pt := Dt +Ct. Then, the battery level evolves
according to

Et+1 = Et −Dt +Bt, Dt ≤ Et (2)

with E0 = 0.
Assume the transmission rate is a concave function of Pt,

denoted as R(Pt). Our objective is to optimize the long-
term average transmission rate under the energy causality
constraint and the battery usage constraint, which is denoted
as the expected number of charge/discharge operations per
time slot. Then, the optimization problem is formulated as

max
{Ct,Dt}

lim
T→∞

1

T

T∑
t=1

E[R(Pt)] (3)

s.t. (1)− (2), lim
T→∞

1

T

T∑
t=1

E (1Dt
+ 1Bt

) ≤ ρ (4)

+
At

Bt

Ct

Dt

Pt

Fig. 1: System model

The expectations in the objective function and the constraint
are taken over all possible energy harvesting sample paths.
The optimization problem has a combinatorial flavor, as we
need to decide in which time slots the system should charge
or discharge the battery. Thus, to make the problem tractable,
in the following, we will first relax the energy causality
constraint and study the problem with a relaxed long-term
energy flow conservation constraint for the battery. With the
structured optimal energy management policy obtained for
this case, we will propose a best-effort transmission policy
which obeys the energy causality constraint and prove that
it achieves the same performance as time T goes to infinity.
Therefore, it is optimal.

III. OPTIMAL POLICY WITHOUT CAUSALITY
CONSTRAINTS

In the following, we will first consider a relaxed opti-
mization problem, where we replace the energy causality
constraint in (2) with the following long-term energy flow
conservation constraint for the battery:

lim
T→∞

1

T

T∑
t=1

Dt ≤ lim
T→∞

1

T

T∑
t=1

Bt (5)

Assume Q is the optimal policy satisfying the battery
usage constraint in (4) and the energy flow conservation
constraint in (5). In general, under Q, the transmit power
Pt may depend on the current energy arrival At, as well as
the energy arrival and departure history up to t− 1, denoted
as Ht−1. With a little abuse of notation, in this section, we
use Pt to denote the transmit power in time slot t under
policy Q. We assume Pt is a deterministic function of At
and Ht−1, denoted as Pt = Q(At, H

t−1). In the following,
we will identify the structural properties of Q, and show that
it can be explicitly obtained using a simple approach. Our
analysis can be directly extended to handle any randomized
policy as well.

Define At := {(At, Ht−1)|At 6= Q(At, H
t−1)}, t =

1, 2, . . ., i.e., the set of states in which the battery charges or
discharges in time slot t under Q. Define

P0 = lim
T→∞

1

T

T∑
t=1

E[At|(At, Ht−1) ∈ At], (6)

i.e., the average amount of energy harvested during the states
included in ∪∞t=1At. We assume the limit exists. Then, we
have the following observations.

Lemma 1 Under the optimal policy Q, Bt and Dt cannot
be positive in the same slot t.

This is obvious due to the fact that if Bt and Dt are both
positive, we can always adjust the values of Bt and Dt to
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make one of them to be zero, and achieve the same transmit
power Pt with a reduced battery usage cost.

Lemma 2 Under the optimal policyQ, whenever the battery
charges or discharges, the transmit power Pt should be a
constant and equal to P0.

Lemma 2 can be proved by Jensen’s inequality. Due to space
limitations, all of the proofs except that of Theorem 1 will be
omitted. Based on Lemmas 1 and 2, we have the following
theorem.

Theorem 1 The optimal policy under the relaxed long-term
energy flow conservation constraint depends on the instan-
taneous energy arrival only, and has a double-threshold
structure, i.e., if At < τ1, we must have Dt = P0 − At,
Pt = P0; if At > τ2, we must have Bt = At − P0,
Pt = P0, where P0, τ1 and τ2 are the solution to the
following optimization problem

max
P0,τ1,τ2

R(P0)ρ+

∫ τ2

τ1

R(x)pA(x)dx (7)

s.t. P[At > τ2] + P[At < τ1] = ρ (8)
E[At−P0|At > τ2] = E[P0−At|At < τ1](9)
τ1 ≤ P0 ≤ τ2 (10)

Theorem 1 can be proved through contradiction. Assume that
Q does not have such double-threshold structure. Then, we
can always construct another policy to outperform it without
violating the constraints in (4) and (5). The detailed proof is
provided in the Appendix.

Theorem 1 provides an upper bound on any energy man-
agement policy satisfying the energy causality constraint and
the battery usage constraint.

Theorem 2 The objective function (7) can be reduced to a
function with a single variable τ1. Moreover, it first increases
then decrease in τ1, and the maximum point corresponds to
the optimal solution satisfying (8)-(10).

Theorem 2 suggest a computationally efficient way to solve
the optimization problem described in Theorem 1. Starting
with τ1 = 0, we first solve (8)(9) to get τ2 and P0 and eval-
uate the objective function. We gradually increase τ1, repeat
the process, and keep track of the objective function value
until we observe a decrease. The turning point corresponds
the optimal solution.

IV. OPTIMAL POLICY UNDER CAUSALITY CONSTRAINTS

Let τ1, τ2, P0 be the optimal solution to the optimization
problem described in Theorem 1. Let B = [0, τ1] ∪ [τ2,∞].
Then, we define a best-effort transmission policy as follows.

Definition 1 (Best-effort transmission policy) In each
time slot t, if At /∈ B, the transmitter transmits with the
harvested energy At. Otherwise, if At > τ2, the battery is
charged with amount At−P0, and transmitter transmits with
P0; if At < τ1 and Et 6= 0, the battery is discharged with
amount min{Et, P0 − At}, and the transmitter transmits
with min{Et, P0 −At}+At.

We note that the energy causality constraint is always
satisfied under the proposed best-effort transmission policy.
Besides, the battery usage constraint is satisfied as well. Due
to the energy causality constraint, the transmitter may not
be able to transmit with power P0 if At < τ1 and Et is
not sufficiently large. This may result in some performance
degradation. However, as we will show in the following
theorem, the probability of such scenario will decrease ex-
ponentially fast as T increases. Thus, the long-term average
throughput will converge to that upper bound exponentially,
which indicates the optimality of the proposed best-effort
policy.

Define the planned charge/discharge process as

A∗t =

{
At − P0 At ∈ B

0 At /∈ B
(11)

Then, under the proposed best effort policy, we have Et+1 =
max{Et +A∗t , 0}, and the energy spent at t is

Pt = At + Et − Et+1 (12)

We define

Qt =

{
P0 At ∈ B
At At /∈ B

(13)

Thus, Pt 6= Qt if and only if Et + At < P0, and Pt ≤ Qt,
∀t. Note that Qt is exactly the optimal policy defined in
Theorem 1.

Theorem 3 Assume |At| ≤M and R(·) is Lipschitz. Under
the best-effort transmission policy,

lim
T→+∞

1

T

T∑
t=1

(Qt − Pt) = 0, a.s. (14)

Theorem 3 indicates that the best-effort transmission pol-
icy converges to the optimal policy described in Theorem 1
almost surely.

Theorem 4 The best-effort transmission policy achieves the
upper bound on the long-term expected throughput charac-
terized in Theorem 1 almost surely. Therefore, it is optimal.

V. NUMERICAL RESULTS

In this section, we use numerical results to illustrate the
proposed best-effort transmission policy and evaluate its
performance.

We assume the energy arrivals are i.i.d. random variables
uniformly distributed over [0, 6]. We let ρ = 0.3, i.e., the
battery can only be charged or discharged for 30% of the
time, and the rate function R(x) = 1

2 log(1 + x). We first
numerical solve the equations in Theorem 1, and identify
the corresponding thresholds τ1 = 1.0158, τ2 = 5.2158, and
P0 = 2.7298. The corresponding time-average transmission
rate is 0.6761, which is the upper bound for any online policy.

We then plot one sample path of the energy arrivals for the
first 20 time slots in Fig. 2, and indicate the corresponding
transmit power under the proposed policy. As expected, the
transmit power equals At if At falls between those two
thresholds, and equals P0 otherwise, except when t = 9, 14.
In those time slots, the battery does not have sufficient energy
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Fig. 2: A sample path of the energy arrivals and the transmit
policy.

to meet the power demand P0, and the transmitter transmits
with all the power the system has at that time.

We then evaluate the time-average transmission rate and
the average number of battery charge/discharge operations
per time slot. We plot a sample path in Fig. 3. We observe
that both curves fluctuate at the beginning, and become
stable after about 250 time slots. This corroborates with
our theoretical results that the performance of the best-effort
transmission policy converges to the upper bound almost
surely. Finally, we run the simulation 1000 times, and plot
the sample average of 1

T

∑T
t=1R(Pt) as a function of T in

Fig. 4. The sample average of battery charge/discharge rate
is also plotted in the same figure. We observe that the sample
average of 1

T

∑T
t=1R(Pt) converges to the upper bound as

expected. The sample average of battery charge/discharge
rate is very close to the battery usage constraint after a
short time period. This implies that the desired battery usage
constraint is satisfied under the proposed policy.

APPENDIX

Assume under the optimal policy Q, the transmit power
does not obey the double-threshold structure. Define

A−t = {(At, Ht−1)|(At, Ht−1) ∈ At, At < P0, }, t = 1, 2, . . .

A+
t = {(At, Ht−1)|(At, Ht−1) ∈ At, At ≥ P0, }, t = 1, 2, . . .

and

P[A−] = lim
T→∞

1

T

T∑
t=1

P[A−t ], P[A+] = lim
T→∞

1

T

T∑
t=1

P[A+
t ].

Then, we define

A−t = {(x,Ht−1)|P[0 ≤ At ≤ x] ≤ P[A−]}, t = 1, 2, . . .

Ā+
t = {(x,Ht−1)|P[At ≥ x] ≤ P[A+]}, t = 1, 2, . . .

Denote At = A−t ∪ A+
t , Āt = A−t ∪ Ā+

t . Define

P 0 := lim
T→∞

1

T

T∑
t=1

E[At|(At, Ht−1) ∈ At] (15)

P̄0 := lim
T→∞

1

T

T∑
t=1

E[At|(At, Ht−1) ∈ Āt] (16)
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Fig. 3: A sample path of the time-average transmit rate and
the battery charge/discharge rate.
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Fig. 4: Sample path of the energy arrivals and the transmit
policy.

We define two policies Q and Q̄ under which in each time
slot t, the transmitter power is defined as follows respectively.

P t =

{
At, (At, H

t−1) /∈ At
P 0, (At, H

t−1) ∈ At
(17)

P̄t =

{
At, (At, H

t−1) /∈ Āt
P̄0, (At, H

t−1) ∈ Āt
(18)

Denote

R(Q) := lim
T→∞

1

T

T∑
t=1

R(Pt)

R(Q) := lim
T→∞

1

T

T∑
t=1

R(P t)

R(Q̄) := lim
T→∞

1

T

T∑
t=1

R(P̄t).

We aim to show that

E[R(Q)] ≤ E[R(Q)], E[R(Q)] ≤ E[R(Q̄)],

based on which we can claim that a necessary condition for
Q to be optimal is, in each time slot t,

A−t = A−t , Ā+
t = A+

t ,

Pt = P0, ∀(At, Ht−1) ∈ At,

2016 IEEE International Symposium on Information Theory

478



i.e., a double-threshold structure.

Definition 2 Let f , g be two increasing functions defined
over Ic := [0, c]. We say f ≺ g if

1) ∀t ∈ Ic,
∫ t
0
f(s)ds ≥

∫ t
0
g(s)ds.

2)
∫ c
0
f(s)ds =

∫ c
0
g(s)ds.

Lemma 3 If f ≺ g, then for any concave function r(·),∫ c

0

r(f(s))ds ≥
∫ c

0

r(g(s))ds

Given At, t = 1, 2, . . . define the sub-level function

φA(x) = lim
T→∞

1

T

T∑
t=1

P[At ≤ x, (At, Ht−1) ∈ At]

Take one of its quasi-inverse, denote as xA(φ). Note
φA(xA(φA(x))) = φA(x). Assume both are increasing.
Then,

φA(∞) = lim
T→∞

1

T

T∑
t=1

P[At] := P[A]

We note that

φA(x) ≥ φA(x), if x ∈ [0, P0)

φA(x) = φA(x), if x ∈ [P0,∞)

Thus,

xA(φ) ≤ xA(φ), if φ ∈ [0, φA(P0))

xA(φ) = xA(φ), if φ ∈ [φA(P0), φA(∞))

Define

f(φ) =

 xA(φ) φ ∈ [0, φA(P 0))
P 0 φ ∈ [φA(P 0), φA(P 0)+φA(∞)]

xA(φ− φA(∞)) φ ∈ (φA(P 0)+φA(∞), 2φA(∞)]

g(φ) =

 xA(φ) φ ∈ [0, φA(P0))
P0 φ ∈ [φA(P0), φA(P0) + φA(∞)]

xA(φ− φA(∞)) φ ∈ (φA(P0)+φA(∞), 2φA(∞)]

Then, we have the following Lemmas.

Lemma 4 f ≺ g on [0, 2φA(∞)].

Lemma 5 Denote
∫
AR(·) = E[R(·)|A] · P[A]. We have∫ 2φA(∞)

0

R(f(t))dt = lim
T→∞

1

T

T∑
t=1

(∫
At

R(P 0)+

∫
At

R(At)

)
∫ 2φA(∞)

0

R(g(t))dt = lim
T→∞

1

T

T∑
t=1

(∫
At

R(P0)+

∫
At

R(At)

)
In order to show E(R(Q)) ≤ E(R(Q)), it suffices to show

that

E[R(Q)]− lim
T→∞

1

T

T∑
t=1

E[R(At)]

≤ E[R(Q)]− lim
T→∞

1

T

T∑
t=1

E[R(At)] (19)

We note that under Q, we have Pt = At if (At, H
t−1) /∈ At;

Similarly, under Q, we have P t = At if (At, H
t−1) /∈ At.

Thus, (19) is equivalent to

lim
T→∞

1

T

T∑
t=1

∫
At

R(Pt)−R(At)

≤ lim
T→∞

1

T

T∑
t=1

∫
At

R(P t)−R(At)

i.e.,

lim
T→∞

1

T

T∑
t=1

(∫
At

R(Pt) +

∫
At

R(At)

)

≤ lim
T→∞

1

T

T∑
t=1

(∫
At

R(P t) +

∫
At

R(At)

)
which is then true due to Lemma 2, the definition of P t,
Lemma 4 and Lemma 5.

Similarly, we can show that E(R(Q)) ≤ E(R(Q̄)).
Therefore, the optimal policy must have the double-threshold
structure specified in Theorem 1.
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