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Abstract—In this paper, we study the optimal sensing schedul-
ing problem for an energy harvesting sensor. The objective is
to strategically select the sensing time such that the long-term
time-average sensing performance is optimized. In the sensing sys-
tem, it is assumed that the sensing performance depends on the
time durations between two consecutive sensing epochs. Example
applications include reconstructing a wide-sense stationary ran-
dom process by using discrete-time samples collected by a sensor.
We consider both scenarios where the battery size is infinite and
finite, assuming the energy harvesting process is a Poisson random
process. We first study the infinite battery case and identify a per-
formance limit on the long-term time average sensing performance
of the system. Motivated by the structure of the performance limit,
we propose a best-effort uniform sensing policy, and prove that
it achieves the limit asymptotically, thus it is optimal. We then
study the finite battery case, and propose an energy-aware adap-
tive sensing scheduling policy. The policy dynamically chooses
the next sensing epoch based on the battery level at the current
sensing epoch. We show that as the battery size increases, the sens-
ing performance under the adaptive sensing policy asymptotically
converges to the limit achievable by the system with infinite bat-
tery, thus it is asymptotically optimal. The convergence rate is also
analytically characterized.

Index Terms—Energy harvesting, finite battery, best-effort uni-
form sensing scheduling, adaptive sensing scheduling.

I. INTRODUCTION

I N THIS paper, we investigate the optimal online sensing
scheduling of an energy harvesting sensor. Energy arrives

at the sensor according to a Poisson process, and a unit amount
of energy is consumed by the sensor to collect one measure-
ment. A sensor cannot take any measurement if it does not have
sufficient energy in its battery, i.e., sensing operations must
satisfy the energy causality constraint. We consider an applica-
tion scenario where a sensor collects measurements at discrete
time epochs to estimate a time evolving physical quantity (tem-
perature, humidity, etc). Modeling the monitored quantity as a
random process, we assume that the sensing performance is a
function of the discrete sensing epochs. Then, the question we
aim to answer is: Given the statistics of the energy harvesting
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process, how would the system strategically select the sensing
epochs to optimize the long-term expected sensing perfor-
mance, subject to the energy causality constraint at the sensor?
Ideally, the sensing policy should be online, lightweight, and
require minimum knowledge of the energy harvesting process
and the underlying monitored random process.

There are three dimensions of difficulty in designing such a
sensing policy. First, the scarce energy supply imposes a strin-
gent constraint on the number of measurements the sensor can
take. In order to make each sample count, the sensing policy
need to exploit the structural properties of the underlying moni-
tored random process. Second, the energy harvesting process is
stochastic in nature. The sensing policy should be able to cope
with the fluctuations in energy supply and maintain a reliable
sensing performance for almost all possible energy harvesting
profiles. Third, in most practical scenario, a sensor is equipped
with a finite battery, and energy overflow may happen if it is
not spent in time. The sensor thus faces a dilemma of spending
energy to collect less informative samples, or of saving energy
for more advantageous time epochs, a step which may lead to
energy loss.

In this paper, we consider a special sensing performance
function, which is motivated by the form of time-average error
in reconstructing a random process with power-law decaying
covariance [1]. We exploit the properties of the sensing perfor-
mance function to devise our online sensing scheduling policy.
We investigate both cases when the battery size is infinite and
finite. When the battery size is infinite, we first identify a perfor-
mance limit on the long-term time average sensing performance
of the system. Motivated by the structure of the performance
limit, we propose a best-effort uniform sensing policy, and
prove that it achieves the limit asymptotically, thus it is opti-
mal. When the battery size is finite, we aim to investigate the
impact of finite battery size on the sensing performance, and
bring the sensing performance as close to that of the system
with infinite battery as possible. We propose an energy-aware
adaptive sensing scheduling policy, which dynamically chooses
the next sensing epoch based on the battery level at the current
sensing epoch, and show that it is asymptotically optimal as the
battery size increases. The convergence rate is also explicitly
characterized.

A. Main Contribution

The main contributions of this paper are threefold:
1) First, we study an application oriented sensing scheduling

for energy harvesting sensors. Different from most exist-
ing energy management schemes where the optimization
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objective function depends on the instantaneous power
allocated to the sensor, in our formulation, the sensing
performance depends on the durations between con-
secutive sensing epochs. Thus, instead of deciding the
instantaneous power consumption over the whole oper-
ation duration, in this paper, the objective is to decide
the discrete sensing epochs for the sensor under the
energy constraints. Such formulation is fundamentally
different from existing works. It requires a new set of
analytical tools, and results in a different type of energy
management policies.

2) Second, we investigate both the infinite battery case and
the finite battery case, and propose two intuitive yet prac-
tical online sensing scheduling policies with provable
performance guarantees. The proposed scheduling poli-
cies only require the instantaneous battery level to decide
the sensing epochs. Thus, the sensor can be turned off
between two scheduled sensing epochs to save energy.
This is extremely helpful for sensors operating under
stringent energy constraint. For the finite battery case, we
explicitly identify the convergence rate of the proposed
policy as a function of the battery size, which provides
theoretical guidelines on the system design of energy
harvesting sensing systems.

3) Finally, we introduce Martingale process, renewal pro-
cess, and a novel virtual energy harvesting sensing system
to analyze the battery level evolution under the proposed
policies. Such mathematical tools are new to the area
of energy harvesting communications and networks, and
might be useful for related problems, especially for the
construction and analysis of online scheduling policies.

B. Related Work

A large number of energy management schemes have been
proposed to cope with the random nature of the energy supply
at energy harvesting sensors from different perspectives. Under
the infinite battery assumption, energy management schemes
have been developed to optimize communication related met-
rics, such as channel capacity, transmission delay or network
throughput [3]–[5], and signal processing related performance
metrics, such as estimation mean squared error (MSE), detec-
tion delay, false alarm probability [6], [7].

When the finite battery assumption is imposed, it changes
the problem dramatically, and makes the corresponding optimal
energy management much more complicated. One approach
is to formulate the energy management problem as a one-
shot offline optimization problem, under the assumption that
the energy harvesting profile is known in advance. Examples
include the throughput maximization problems studied in [8]–
[10], where the optimal policies are significantly different from
their counterparts in an infinite battery setting [3], [4], [11].
Another approach is to formulate the optimal energy man-
agement problem as an online stochastic control problem,
assuming that only the statistics and the history of the energy
harvesting process are available at the controller. Modeling the
energy replenishing process as a Markov process, [12] aims to

maximize the time average reward by making decisions regard-
ing whether to transmit or discard a packet based on the current
energy level. The optimal policy is shown to have a thresh-
old structure. [13] studies the performance limits of a sensing
system where the battery size and the data buffer are finite
and proposes an asymptotically optimal energy management
scheme. The dynamic activation of sensors with unit battery
in order to maximize the sensing utility is studied in [14]. In
general, online optimal energy management policies under a
finite battery constraint are often very difficult to characterize.
Explicit solutions only exist for certain special scenarios.

The finite battery case studied in this paper is significantly
different from that in [13]. [13] considers a time-slotted sys-
tem, and the objective is to adaptively vary the amount of
energy spent in each time slot to optimize the system perfor-
mance. However, we consider a continuous-time system in this
paper, and the proposed asymptotically optimal design varies
the durations between two consecutive sensing epochs accord-
ing to the instantaneous battery level. This makes the analysis of
the system performance under the proposed policy much more
challenging.

C. Paper Outline

This paper is organized as follows. Section II states the
system model and problem formulation. Section III provides
the sensing scheduling policy for the infinite battery case and
proves its optimality. Section IV describes an adaptive sensing
scheduling policy for the finite battery case, and analytically
characterizes its performance. Simulation results are provided
in Section V. Section VI concludes the paper. Proofs of the main
theorems are presented in the Appendix.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Energy Harvesting Model

Consider a sensor node powered by energy harvested from
the ambient environment. It is assumed that the sensor node
has an energy queue, such as a rechargeable battery or a super
capacitor, to store the harvested energy. The energy queue is
replenished randomly and consumed by taking observations. It
is assumed that a unit amount of energy is required for one
sensing operation. Without loss of generality, we assume the
sensor is equipped with a battery with capacity B, B ≥ 1. When
B = ∞, it corresponds to the infinite battery case.

The energy arrival follows a Poisson process with parame-
ter λ. Hence, energy arrivals occur in discrete time instants.
Specifically, we use t1, t2, . . . , tn, . . . to represent the energy
arrival epochs. Then, the energy inter-arrival times ti − ti−1
are exponentially distributed with mean λ. We assume λ = 1
throughout this paper for ease of exposition. If λ �= 1, we can
always normalize the time axis to make the energy arrival rate
equal to one unit per unit time, and the algorithms and theo-
retical results presented in this paper will still be valid on the
normalized time scale. Without loss of generality, it is assumed
that the system starts with an empty energy queue at time 0.

A sampling policy or sensing scheduling policy is denoted
as {ln}∞n=1, where ln is the n-th sensing time instant. Let l0 =
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0, and dn := ln − ln−1, for n = 1, 2, . . .. Define A(dn) as the
total amount of energy harvested in [ln−1, ln), and E(l−n ) as the
energy level of the sensor right before the scheduled sensing
epoch ln . Then, under any feasible sensing scheduling policy,
the energy queue evolves as follows

E(l−n+1) = min{E(l−n ) − 1 + A(dn+1), B} (1)

E(l−n ) ≥ 1 (2)

for n = 1, 2, . . .. Eqn. (2) corresponds to the energy causality
constraint in the system. Based on the Poisson arrival pro-
cess assumption, A(dn+1) is an independent Poisson random
variable with parameters dn+1.

B. Sensing Performance Metric

We assume the sensing performance depends on how the
sensing epochs are placed in time. Given that the durations
between two sensing epochs are dn , n = 1, 2, . . ., the sensing
performance over the sensing period is measured by

∑
n f (dn).

In addition, we make the following assumptions.
Assumptions 1 The sensing performance function f (d), d >

0, has the following properties:
1) f (d) is convex and monotonically increasing in d.
2) f (d)/d is increasing in d.
3) f (d) ≤ Cd, where C is a positive constant.
One example application that fits this model is to use sam-

ples collected at discrete time instants to estimate a time
evolving physical quantity (temperature, humidity, etc), which
is modeled as a random processes with power-law decay-
ing covariance. It is shown that the linear minimum MSE
(MMSE) estimation for any point on the random process only
requires the two adjacent discrete-time samples bounding the
point [1]. In this case, f (d) can be interpreted as the total MSE
over a length-d interval bounded by two consecutive sensing
epochs. Optimizing the overall sensing performance is equiva-
lent to minimizing the total MSE of the linear MMSE over the
whole sensing period.

Such assumptions enable us to bound the long-term average
sensing performance and motivate the design of the optimal
sensing policies. We point out that in this paper, we require
d to be strictly greater than zero, i.e., we do not consider the
scenario where multiple samples are collected at the same time
point. This is because if multiple samples are collected at a time,
in general, the long-term sensing performance will depend on
the number of samples collected at individual sensing epochs,
as well as the durations between them. Therefore, it may not
reasonable to assume that the sensing performance over the
sensing period can be decomposed into the form of

∑
n f (dn).

We will examine specific forms of sensing performance func-
tions to accommodate such sensing operations, and explore the
optimal sampling policy in this scenario in the future.

For a clear exposition of the result, we assume that two sam-
ples at time 0 and time T are available at the sensor for free,
i.e., no energy is used for collecting those two samples. Denote
these two sampling epochs as l0 = 0, lNT +1 = T . Besides, there
are NT sensing epochs placed over (0, T ). The overall sensing
performance over the duration [0, T ] is then a summation of
f (dn), n = 1, 2, . . . , NT + 1.

C. Problem Formulation

Our objective is to optimize the long-term average sens-
ing performance by strategically selecting the sensing epochs
{ln}∞n=1. We restrict to online policies, i.e., whenever the sys-
tem decides a sensing epoch, its decision only depends on the
energy harvesting profile up to that time, as well as previous
sensing decisions. The optimization problem is formulated as

min .
{ln}∞n=1

lim sup
T →+∞

E

[
1

T

NT +1∑
n=1

f (dn)

]
(3)

s.t. (1) − (2)

where the expectation in the objective function is taken over all
possible energy harvesting sample paths.

This is essentially a stochastic control problem. In contrast
to other discrete-time stochastic control problems where deci-
sions need to be made at every time slot (e.g., Markov Decision
Process (MDP)), in this paper, we consider a continuous time
setting, and decisions can be made at arbitrary time points.
Actually, as we will see in Sec. IV, selecting the decision
points could be a task for the scheduler as well. Therefore,
this problem does not admit an MDP formulation in general,
and it is extremely challenging to explicitly identify the optimal
solution.

III. SENSING SCHEDULING WITH INFINITE BATTERY

In this section, we will study the optimal sensing schedul-
ing for the infinite battery case. We will show that the sensing
performance (i.e., time-average MSE) in this scenario has a
lower bound, which can be achieved almost surely by a best-
effort uniform sensing scheduling policy. The performance
limit provided in this section, and the best-effort uniform sens-
ing algorithm will serve as a baseline for the finite battery case
discussed in Section IV.

Lemma 1: Under every feasible scheduling policy, we have

lim sup
T →+∞

NT

T
≤ 1, a.s. ∀i (4)

where NT = ∑∞
n=1 1ln≤T is the total number of samples taken

in [0, T ].

Proof: Due to the energy causality constraint (2), we
always have NT ≤ ∑∞

n=1 1tn≤T , therefore

lim sup
T →+∞

NT

T
≤ lim sup

T →+∞

∑∞
n=1 1tn≤T

T
= 1 a.s.

where the last equality follows from the strong law of large
numbers. �

Lemma 2: The objective function in (3) is lower bounded as

lim sup
T →+∞

E

[
1

T

NT +1∑
n=1

f (dn)

]
≥ f (1) (5)
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Proof:

lim sup
T →+∞

E

[
1

T

NT +1∑
n=1

f (dn)

]

≥ lim inf
T →+∞E

[
1

T

NT +1∑
n=1

f (dn)

]

≥ E

[
lim inf
T →+∞

1

T

NT +1∑
n=1

f (dn)

]
(6)

≥ E

[
lim inf
T →+∞

NT + 1

T
f

(∑NT +1
n=1 dn

NT + 1

)]
(7)

= E

[
lim inf
T →+∞

NT + 1

T
f

(
T

NT + 1

)]
≥ f (1) (8)

where (6) follows from Fatou’s Lemma, (7) follows from the
convexity of f . The last inequality in (8) follows from Lemma 1
and the assumption that f (d)/d is an increasing function
in d. �

Definition 1 (Best-effort Uniform Sensing Scheduling) The
sensor is scheduled to perform the sensing task at sn = n, n =
1, 2, . . .. The sensor performs the sensing task at sn if E(s−

n ) ≥
1; Otherwise, the sensor keeps silent until the next scheduled
sensing epoch.

Here we use sn to denote the n-th scheduled sensing epoch,
which is in general different from the n-th actual sensing
epoch ln since some of the scheduled sensing epochs may be
infeasible.

Theorem 1 Under the best-effort uniform sensing scheduling
policy, we have

lim
T →+∞

NT

T
= 1 a.s.

The proof of Theorem 1 is provided in Appendix A.
Theorem 1 indicates that the best-effort uniform sensing
scheduling policy is asymptotically equivalent to a uniform
sensing policy almost surely, i.e., the sensor has sufficient
energy to perform the task for almost every scheduled sensing
epoch.

Theorem 2 The best-effort uniform sensing scheduling pol-
icy is optimal when the battery size is infinite, i.e.,

lim sup
T →+∞

1

T

NT +1∑
n=1

f (dn) = f (1) a.s.

where dn is the duration between the actual sensing epochs ln
and ln−1.

The proof of Theorem 2 is provided in Appendix B.
Theorem 2 indicates that for almost every energy harvesting
sample path, the best-effort uniform sensing policy converges
to the lower bound in Lemma 2 when the battery size is infi-
nite. This is due to the fact that when the battery size is infinite,
the fluctuations of the energy arrivals can be averaged out when
time is sufficiently large, thus a uniform sensing scheme with
sensing rate equal to the energy harvesting rate can be achieved
asymptotically as T is sufficiently large. Thus, the proposed
best-effort uniform sensing is optimal. However, with finite bat-
tery, it may not be able to achieve the lower bound, since energy

overflow is inevitable in this situation, which in turn results in
more frequent infeasible sensing epochs due to battery outage.

IV. SENSING SCHEDULING WITH FINITE BATTERY

In order to optimize the sensing performance when the bat-
tery size is finite, intuitively, the sensing policy should try to
prevent any battery overflow, as wasted energy leads to perfor-
mance degradation. Meanwhile, the properties of the sensing
performance function require the sensing epochs to be as uni-
form as possible. Those two objectives are not aligned with
each other, thus, the optimal scheduling policy should strike a
balance between them.

In the following, we propose an energy-aware adaptive sens-
ing scheme. Different from the best-effort uniform sensing
scheduling policy that schedules the sensing epochs uniformly,
the proposed sensing policy adaptively changes its sensing rate
based on the instantaneous battery level. Intuitively, when the
battery level is high, the sensor should sense more frequently
in order to prevent battery overflow; When the battery level is
low, the sensor should sense less frequently to avoid infeasible
sensing epochs. Meanwhile, the sensing rate should not vary
significantly so that a relatively uniform sensing scheduling can
be achieved.

Definition 2 (Energy-aware Adaptive Sensing Scheduling)
The adaptive sensing scheduling policy defines sensing epochs
sn recursively as follows

sn = sn−1 +

⎧⎪⎨
⎪⎩

1
1−β

, E(s−
n−1) < B

2

1, E(s−
n−1) = B

2
1

1+β
, E(s−

n−1) > B
2

(9)

where s0 = 0, E(s−
0 ) = 1, and

β := k log B

B
(10)

with k being a positive number such that 0 < β < 1. The sensor
performs the sensing task at sn if E(s−

n ) ≥ 1; Otherwise, the
sensor keeps silent until the next scheduled sensing epoch.

Remark 1: The policy divides the battery state space into
three different regimes. At each scheduled sensing epoch, the
sensor decides whether to sense according to its current battery
state, and adaptively selects the next sensing epoch depend-
ing on which regime the current battery state falls in. When
it is above B/2, the sensor senses every 1

1+β
units of time, and

when it is below B/2, it senses every 1
1−β

units of time. The
value of β controls the deviation of the sensing rates. Intuitively,
when the value of β increases, the probability that the battery
overflows decreases, so does the probability that a scheduled
sensing epoch is infeasible. However, larger β may also lead
to large variation in the durations between consecutive sensing
epochs, which results in sensing performance degradation.

Remark 2: We note that the scheduled sensing epochs are
defined in a recursive fashion. At each scheduled sensing epoch,
the sensor only need to check its current battery level and decide
the next sensing epoch. Thus, the sensor can be turned off
temporarily until the next sensing epoch. This could save a sig-
nificant amount of energy of the sensor from staying awake and
constantly monitoring the battery status.
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Remark 3: As B → ∞, we have β → 0 for any fixed k, i.e.,
the adaptive sensing policy converges to the best-effort uniform
sensing proposed in Section III as the battery size increases.
Thus, it is reasonable to expect that the adaptive sensing policy
is asymptotically optimal as the battery size approaches infinity.

In the following two theorems, we prove the asymptotical
optimality of the adaptive sensing policy, and characterize the
speed of its convergence analytically.

Theorem 3 Over the sensing period (0, T ), we denote A(T )

as the total amount of harvested energy, N ′
T as the total num-

ber of scheduled sensing epochs, and NT as the total number
of actual sensing epochs as defined previously in Section II.
Then, under the adaptive sensing scheduling policy, the ratio of

infeasible sensing epochs, denoted as limT →∞
N ′

T −NT

N ′
T

, scales

in O
(

2k+1k(log B)2

Bk+1

)
, and the average amount of wasted energy

per unit time, denoted as limT →∞ A(T )−NT −E(T )
T scales in

O
(

2k+1k(log B)2

Bk+1

)
.

Theorem 3 indicates that when B is sufficiently large, both
upper bounds of the battery outage and overflow probabilities
decrease monotonically as k increase. As the battery size B
increases, the upper bounds of those two probabilities decrease
and eventually approach zero. Thus, the proposed policy is
asymptotically equivalent to a uniform sensing policy, similar
to the best-effort uniform sensing policy for the infinite battery
case.

Theorem 4 Under the adaptive sensing scheduling policy, the
gap between the time average sensing performance, denoted as
limT →∞ 1

T

∑NT +1
n=1 f (dn), and the lower bound f (1) scales in

O

(
2k+1k(log B)2

Bk+1 +
(

log B
B

)2
)

.

Theorem 4 implies that as battery size B increases, the sens-
ing performance under the adaptive sensing scheduling policy
approaches the lower bound achievable for the system with infi-
nite battery. Thus, it is asymptotically optimal. Compared to the
bounds in Theorem 3, the bound in Theorem 4 has an extra term(

log B
B

)2
. For a sufficiently large B, the bound is dominated by

the first term when k is small, and it is dominated by the second
term when k is large. Thus, it may not monotonically decrease
as k increase, which is consistent with the fact that the sensing
performance is not only related to the battery outage and over-
flow probabilities, but also depends on the durations between
consecutive sensing epochs.

The proofs of Theorems 3 and 4 are provided in
Appendices D and E, respectively. The sketch of the proof is
as follows. The battery states at scheduled sensing epochs form
a discrete-time random process {E(s−

n )}∞n=1. However, it dif-
fers from a conventional discrete-time random process since
the duration between two consecutive time indices varies in
time: it could be 1

1−β
, 1

1−β
or 1, depending on the battery

state. This makes the analysis very complicated. To simplify the
analysis, in Appendix C, we construct a “virtual" energy har-
vesting sensing system, whose battery state can be any integer
in (−∞,+∞). Assuming the virtual sensing system senses at a
uniform rate, we analytically characterize the expected duration
between two consecutive events that the virtual battery state

Fig. 1. Sensing rate as a function of T .

hits a certain level. We then consider the portion of {E(s−
n )}∞n=1

lying in (0, B/2] and [B/2, B) separately. In Appendix D, we
show that the portion lying in each region can be mapped to a
virtual system, and exploit the analytical results in Appendix C
to prove Theorem 3. In Appendix E, we use the results from
Appendix D and the properties of the sensing performance
function f (d) to prove Theorem 4.

V. SIMULATION RESULTS

The performances of the proposed sensing scheduling poli-
cies are evaluated in this section through simulations. We adopt
the MSE function for random process reconstruction in [1] to
measure the sensing performance under the proposed sensing
scheme. Specifically, the correlation between two samples sep-
arated by a time duration d is ρd , and the average reconstruction
MSE of the random field between two d-spaced samples is

f (d) = d
1 + ρ2d

1 − ρ2d
+ 1

log ρ
(11)

The power-law parameter ρ is set to be 0.7 in the simulations.
First, we evaluate the uniform best-effort sensing policy for

the infinite battery case. We generate 1,000 energy harvesting
profiles according to the Poisson random process with λ = 1,
and perform the best-effort uniform sensing for each energy
harvesting profile. The sensing rate, NT /T , for each energy har-
vesting profile is tracked and recorded. One sample path and the
sample average sensing rate for the 1,000 sample paths are plot-
ted as functions of T in Fig. 1. It is observed that the sensing
rate approaches λ = 1 asymptotically as T increases, as pre-
dicted in Theorem 1. Thus the best-effort sampling policy can
almost surely approach the behavior of uniform sampling when
T > 400.

The sensing performance under the best-effort uniform sens-
ing policy is shown in Fig. 2. Again, we plot one sample path
and the sample average over the 1, 000 sample paths of the
time average sensing performance as functions of T in the
figure. We observe that the sensing performance curves grad-
ually approach the lower bound f (1) as T increases. When
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Fig. 2. Sensing performance as a function of T .

Fig. 3. The ratio of infeasible sensing epochs.

T = 500, there is only a very small difference between the
simulation results and the analytical lower bound. The results
indicate that the proposed best-effort uniform sensing policy is
asymptotically optimal.

Next, we evaluate the adaptive sensing scheduling policy for
the finite battery case. Fixing the energy harvesting rate to be
λ = 1 per unit time, and T = 100, 000, we generate a sample
path for the Poisson energy harvesting process, and perform the
sensing according to the policy. We keep track of the following
quantities. First, we count the total number of scheduled sens-
ing epochs under the policy. Among those scheduled sensing
epochs, we count the total number of infeasible ones (i.e., the
epoch sn when E(s−

n ) < 1), record the ratio of infeasible sens-
ing epochs under the policy. We let k = 0, 1, 2, respectively,
and perform the adaptive sensing according to (9) with battery
size B varying from 2 to 100. The corresponding results are
plotted in Fig. 3. We note that for each fixed k, the ratio mono-
tonically decreases as B increase, and each curve is roughly
convex in B. This is consistent with the theoretical bounds in
Theorem 3. Meanwhile, for each fixed battery size, the ratio
decreases as k increases. This is due to the fact that the adaptive
sensing policy is more conservative for larger k when battery
level is below B/2, i.e., it senses at a slower rate for larger k,

Fig. 4. The average number of battery overflow per unit time.

Fig. 5. The time averaged sensing MSE.

which makes the energy level drift away from empty state with
higher probability.

Next, we study battery overflow under the proposed policy.
We count the total number of time instants when the battery
state exceeds B, and divide it by T . The average number of
battery overflow events per unit time is plotted as a function
of B in Fig. 4 for k = 0, 1, 2, respectively. Again, we observe
that for each fixed k, the curve is monotonically decreasing and
roughly convex in B, as predicted by the theoretical bounds in
Theorem 3. Meanwhile, for each fixed battery size, the battery
overflow rate decreases as k increases. This is due to the fact
that the adaptive sensing policy is more aggressive for larger k
when battery level is above B/2, i.e., it senses at a faster rate
for larger k. Thus, the energy level drifts away from full state
with higher probability.

At last, we study the sensing performance in terms of the
time averaged MSE. We calculate the MSE for each interval
bounded by two consecutive sensing epochs as (11), aggre-
gate them and divide the sum by T . The time averaged MSE
is plotted in Fig. 5. We note that for each fixed k, the gap
between the time averaged MSE and the lower bound mono-
tonically decreases as B increases, which is consistent with
the theoretical result in Theorem 4. However, when B is fixed,
the best sensing performance is observed at k = 1, which is
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different from the results in Figs. 3 and 4. Even though the
battery outage and overflow rates decrease in k, the average
sensing performance does not exhibit such monotonicity. This
is because when k is large, the sensing rate varies dramati-
cally in time. Although this leads to lower outage and overflow
probabilities, it compromises the sensing performance as the
sensing scheduling deviates from the desired uniform sens-
ing scheduling. Thus, there exists a tradeoff between reducing
battery outage and overflow probabilities, and equalizing the
sensing rates. The optimal selection of k should jointly consider
those two conflicting objectives.

VI. CONCLUSIONS

In this paper, we considered the optimal online sensing
scheduling policy for an energy harvesting sensing system. We
first provided a lower bound on the time averaged sensing
performance for the system with infinite battery, and showed
that this lower bound can be achieved by a best-effort uni-
form sensing policy. We then investigated the finite battery
case and proposed an energy-aware adaptive sensing schedul-
ing policy, which dynamically varies the sensing rate based
on instantaneous energy level of the battery. We showed that
the battery outage and overflow probabilities under the pro-
posed policy approach zero as the battery size goes to infinity,
and the time averaged sensing performance converges to the
lower bound when the battery size increases. Thus the adaptive
sensing scheduling policy is asymptotically optimal. The con-
vergence rate as a function of the battery size was also explic-
itly characterized. Simulation results validated the theoretical
bounds.

APPENDIX

A. Proof of Theorem 1

The best-effort uniform sensing policy partition the time axis
into slots, each with length 1. Consider the number of energy
arrivals during a slot, denoted as A. Due to the Poisson process
assumption of the energy arrival process, we have

P [A = k] = e−1

k!
, k = 0, 1, 2 . . .

Let E(n) be the energy level of the sensor right before the
scheduled sensing epoch n. Based on E(n), we can group the
time slots into segments with lengths u0, v1, u1, . . . , vk, uk, . . .,
where ui s correspond to the segments that begin with E(n) = 0
and vi s correspond to the segments that begin with E(n) > 0, as
shown in Fig. 6. E(n) jumps from zero to some positive value
ei at the end of the segment corresponding to ui . Therefore, ui

follows an independent geometric distribution

P [ui = k] = e−(k−1)
(

1 − e−1
)

, k = 1, 2 . . .

and vi follows a “random walk” with increment A − 1 starting
at some positive level ei until it hits 0. Note that vi contains a
random walk �i which starts at ei and finishes at ei − 1 for the
first time. Denote the duration of �i as τi .

Fig. 6. An energy level evolution sample path. Crosses represent actual sensing
epochs.

Let KT be the number of segments with E(n) = 0 during T .
Note that T = NT +∑KT

i=0 ui . Therefore, to show NT /T → 1
almost surely, it suffices to show that

lim
T →∞

∑KT
i=0 ui

T
= 0, a.s.

Note that∑KT
i=0 ui

T
=
∑KT

i=0 ui

KT

KT

T
≤
∑KT

i=0 ui

KT

KT∑KT
i=1 τi

As we will show in the following, KT → ∞ almost surely as
T → ∞. Then, by the strong law of large numbers,

lim
T →∞

∑KT
i=0 ui

KT
= 1

1 − e−1
, a.s.

Therefore, to prove Theorem 1, it suffices to show that

lim
T →∞

KT∑KT
i=1 τi

= 0, a.s. (12)

In the following, we will first prove that KT → ∞ almost
surely as T → ∞, and then show (12) holds.

Consider a “random walk” {�k}∞k=0, which starts with 1
and increments with A − 1. Denote the first 0-hitting time for
{�k}∞k=0 as κ . Then, �0 = 1,�κ = 0. Define a random process
{exp(−α�k − γ (α)k)}∞k=0 with α > 0 and γ (α) = e−α − (1 −
α) > 0. We note that

E{exp[−α�k − γ (α)k]| exp(−α�0), . . . ,

exp[−α�k−1 − γ (α)(k − 1)]}
= E{exp[−α(�k−1 + A − 1) − γ (α)(k − 1 + 1)]|

exp(−α�0), . . . , exp[−α�k−1 − γ (α)(k − 1)]}
= exp[−α�k−1 − γ (α)(k − 1)] exp[α − γ (α)]E{exp(−αA)|

exp(−α�0), . . . , exp[−α�k−1 − γ (α)(k − 1)]}
= exp[−α�k−1 − γ (α)(k − 1)]

where the last equality follows from the assumption that A is
a Poisson random variable with parameter 1 and is indepen-
dent with the random walk prior to time slot k. Thus, it is a
Martingale process. Based on the property of a Martingale, we
have

E{exp[−α�k − γ (α)k]}
= E{E{exp[−α�k − γ (α)k]| exp(−α�0), . . . ,

exp[−α�k−1 − γ (α)(k − 1)]}}
= E{exp[−α�k−1 − γ (α)(k − 1)]}
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Applying this equality recursively, we have

exp(−α�0) = E{exp[−α�κ − γ (α)κ]} (13)

= E{(1κ<∞ + 1κ=∞) · exp[−α�κ − γ (α)κ]}
= E

[
1κ<∞ · exp(−α�κ − γ (α)κ)

]
(14)

where the equality in (14) holds due to the fact that exp[−γ (α) ·
∞] = 0. Let α → 0+, then γ (α) → 0+, and the equation
becomes

1 = E [1κ<∞] = P [κ < ∞] (15)

i.e., the probability of hitting 0 in finite time is 1.
We point out that (14) holds for any initial state �0, so

does (15). Thus, starting with any ei > 0, the probability that
the first 0-hitting time is finite equals 1, i.e., P[vi < ∞] = 1.
This implies that for arbitrary time t , the battery will become
empty within finite time after it with probability one. Thus,
limT →∞ P[KT < ∞] = 0, i.e., KT → ∞ almost surely as
T → ∞.

Since �κ = 0, (13) is equivalent to

E
[
exp(−γ (α)κ)

] = exp(−α).

We note that by shifting �i to initial time index 1, it virtually
follows the same random walk {�k}k . For such KT i.i.d random
walks with 0-hitting times τi , we have

E

[
exp

(
−γ (α)

( KT∑
i=1

τi

))]
= exp(−KT α). (16)

Therefore,

P

[
KT∑KT
i=1 τi

> ε

]
= P

[ KT∑
i=1

τi <
KT

ε

]

= P

[
exp

(
−γ (α)

( KT∑
i=1

τi

))
> exp

(
−γ (α)

KT

ε

)]
(17)

≤ exp(−KT α)

exp(−γ (α) KT
ε

)
= exp

(
−KT

(
α − γ (α)

ε

))
(18)

where (17) follows from the monotonicity of e−x and (18) fol-
lows from Markov’s inequality and (16). Since γ (α) = O(α2),
for any ε > 0, we can always find an α to have α − γ (α)

ε
>

0, and then the probability decays exponentially in KT . This
implies that

∞∑
KT =1

P

[
KT∑KT
i=1 τi

> ε

]
< ∞.

According to Borel-Cantelli lemma [15], if the sum of
the probabilities of a sequence of events is finite, then the
probability that infinitely many of them occur is 0. Therefore,

P

(
lim sup

n→∞
KT∑KT
i=1 τi

> ε

)
= 0,

which implies (12). This completes the proof.

B. Proof of Theorem 2

To prove Theorem 2, it suffices to show that

lim sup
T →+∞

1

T

NT +1∑
n=1

f (dn) ≤ f (1) , a.s.

As illustrated in Fig. 6, there are vi equally spaced sensing
epochs in the segment corresponding to vi . Considering the
duration bounded by the first and last sensing epochs in the
segment, the aggregated estimation MSE equals (vi − 1) f (1).
The duration bounded by the last sensing epoch in the segment
associated with vi and the first sensing epoch in the segment
associated with vi+1 is f (ui + 1). Therefore,

lim sup
T →+∞

1

T

NT +1∑
n=1

f (dn)

= lim sup
T →+∞

f (u0) +∑KT
i=1

[
(vi − 1) f (1) + f (ui + 1)

]
T

= lim sup
T →+∞

f (u0) +∑KT
i=1 f (ui + 1)

T

+ T −∑KT
i=0 ui − KT

T
f (1) (19)

≤ lim sup
T →+∞

f (1) −
∑KT

i=0 ui

T
f (1) − KT

T
f (1)

+
∑KT

i=0 Cui

T
+ KT C

T
= f (1) a.s. (20)

where (19) follows from the fact that u0 +∑KT
i=1(vi + ui ) =

T , and (20) follows from Assumptions 1-3) and the fact that
KT /T → 0 and

∑KT
i=0 ui/T → 0 almost surely, as proved in

the proof of Theorem 1.
Since

1

T

NT +1∑
n=1

f (dn) ≤ 1

T

(NT +1∑
n=1

Cdn

)
= C,

it is uniformly bounded in T . By the Bounded Convergence
Theorem [16], we have

lim sup
T →∞

E

(
1

T

NT +1∑
n=1

f (dn)

)
= E

(
lim sup
T →∞

1

T

NT +1∑
n=1

f (dn)

)

= f (1).

C. A Virtual Energy Harvesting Sensing System

Before we define the virtual sensing system in this section,
we first introduce the following Lemma, which will be used
later to characterize the virtual battery evolution process.

Lemma 3: Consider a Poisson random variable A with
parameter λ. Given A ≥ x for some positive integer x , we have
x < E[A|A ≥ x] < x + λ.
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Proof: Define B as a random variable with PMF

P[B = i] = P[A = x + i]

P[A ≥ x]
, i = 0, 1, 2, . . .

Then,

E[A|A ≥ x] =
∑∞

i=0 P[A = x + i](x + i)

P[A ≥ x]
(21)

=
∞∑

i=0

P[B = i](x + i) = x + E[B] (22)

= x +
∞∑

n=0

P[B > n] > x (23)

Thus, in order to prove the other inequality in Lemma 3,
it suffices to prove that P[B > n] < P[A > n] for n =
0, 1, 2, . . ., which is equivalent to P[B ≤ n] > P[A ≤ n] for
n = 0, 1, 2, . . .. Based on the definition of A and B, it then
suffices to show that∑n

i=0 λx+i/(x + i)!∑∞
j=0 λx+ j/(x + j)!

>

∑n
i=0 λi/ i!∑∞
j=0 λ j/j!

(24)

i.e.,

n∑
i=0

∞∑
j=0

λx+i+ j

(x + i)! j!
>

n∑
i=0

∞∑
j=0

λx+i+ j

(x + j)!i!
(25)

Since

n∑
i=0

n∑
j=0

λx+i+ j

(x + i)! j!
>

n∑
i=0

n∑
j=0

λx+i+ j

(x + j)!i!
, (26)

it then suffices to show that for i = 0, 1, . . . , n, j = n + 1, n +
2, . . ., 1

(x+i)! j! > 1
(x+ j)!i! . This is true since j > i , x > 0. �

Consider an energy harvesting sensing system with a vir-
tual battery whose state can be any integer in (−∞,+∞). It
senses every 1

1−β
units of time, even if the battery state is zero

or negative. The energy arrives at the virtual battery according
to a Poisson process with parameter 1. Each sensing operation
consumes one unit of energy. We use Eβ(n) to denote the bat-
tery state right before the n-th sensing epoch, i.e., at time n

1−β
.

Assume the system starts with initial energy level x , then, the
battery status evolves according to

Eβ(0) = x (27)

Eβ(n) = Eβ(n − 1) + A

(
1

1 − β

)
− 1, n = 1, 2, . . . (28)

where A
(

1
1−β

)
is a Poisson random variable with parameter

1
1−β

. Thus,

E[Eβ(n)] = x + β

1 − β
n (29)

Therefore, when 0 < β < 1, the energy level drifts up in
expectation; Otherwise, when β < 0, it drifts down.

Define

�β(α) := logE

[
e
−α

(
A
(

1
1−β

)
−1
)]

= e−α − 1

1 − β
+ α (30)

We note that �β(α) is convex in α, �β(0) = 0, and �′
β(α) =

− e−α

1−β
+ 1. Thus, equation �β(α) = 0 has another root besides

0, denoted as α0. We have

e−α0 − 1

1 − β
+ α0 = 0, �′

β(0) = − β

1 − β
(31)

When α0 is sufficiently small, we have

β = α0

2
+ o(α0) (32)

Assume x ∈ (0, M), where M is a positive integer. We are
interested in the event that the random process {Eβ(n)}∞n=0 hits
or exceeds one of the two boundary levels 0 and M for the first
time. We have the following observations.

Lemma 4: Consider the random process {Eβ(n)}∞n=0 defined
in (27)-(28). Letting κ be the smallest n such that Eβ(n) ≥ M
or Eβ(n) = 0, and τx := E[κ]. Define Px,M as the probability
that Eβ(κ) ≥ M , and Px,0 as the probability that Eβ(κ) = 0.
Then,

Px,M = 1 − e−α0x

1 − e−α0(M+θx )
(33)

Px,0 = e−α0x − e−α0(M+θx )

1 − e−α0(M+θx )
(34)

τx = 1 − β

β
((M + φx )Px,M − x) (35)

where 0 ≤ θx ≤ 1
1−β

, 0 ≤ φx ≤ 1
1−β

.

Proof: Define �n := exp(−α(Eβ(n) + �β(α)n)). Then,
{�n}∞n=0 is a martingale process with initial state �0 =
exp{−αx}. Based on the definition, we have

E[�n] = E[E[�n|�0, . . . , �n−1]] = E[�n−1]

= . . . = E[�0] = exp(−αx) (36)

Taking derivative of both sides with respect to α, we have

E[(Eβ(n) + �′
β(α)n)�n] = x exp(−αx) (37)

Letting α → 0 in (36) for n = κ , we have

LHS = E[�κ ]

= E[�κ |first hits M]Px,M + E[�κ |first hits 0]Px,0

= Px,M + Px,0 = 1 = RHS (38)

Similarly, letting α → α0 in (36) for n = κ , we have

LHS = E[�κ |first hits M]Px,M + Px,0

= exp(−α0x) = RHS (39)

We note

E[�κ |first hits M]

= E[exp(−α0(Eβ(κ) + �β(α0)κ))|Eβ(κ) ≥ M]

= E[exp(−α0 Eβ(κ))|Eβ(κ) ≥ M]

≤ e−α0 M (40)
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On the other hand, we have

E[exp(−α0 Eβ(κ))|Eβ(κ) ≥ M]

≥ exp(−α0E[Eβ(κ)|Eβ(κ) ≥ M]) (41)

≥ e
−α0

(
M+ 1

1−β

)
(42)

where (41) follows from Jensen’s inequality, and (42) follows
from Lemma 3.

Combining (39), (40) and (42), we have

Px,M e−α0(M+θx ) + Px,0 = e−α0x , (43)

where 0 ≤ θx ≤ 1
1−β

.
Solving (38) and (43), we obtain (33)-(34).
Letting α → 0 in (37) for n = κ , we have

LHS = E[(Eβ(κ) + �′
β(α)κ) exp(−α)]

= E

[
Eβ(κ) −

(
1

1 − β
− 1

)
κ

]

= (M + φx )Px,M − β

1 − β
τx = x = RHS

where 0 ≤ φx ≤ 1
1−β

. Thus, we have (35) established. �
Lemma 5: Consider the random process {Eβ(n)}∞n=0 defined

in (27)-(28). Define S−
x,M as the expected time index n when

{Eβ(n)}∞n=0 with α0 = − k log M
M + o

(
log M

M

)
< 0 hits bound-

ary level M for the first time, and S+
x,0 as the expected time

index n when {Eβ(n)}∞n=0 with α0 = k log M
M + o

(
log M

M

)
>

0 hits boundary level M for the first time. Then, S−
M,M =

�
(

Mk+1

k(log M)2

)
, S+

0,0 = �
(

Mk+1

k(log M)2

)
.

Proof: First, let us consider the case when α0 =
− k log M

M + o
(

log M
M

)
< 0. We use superscript − to indicate that

α0 involved in the corresponding quantities is negative.
Applying Lemma 4 for x = 1 and x = M − 1, we have

P−
1,M = 1 − e−α0

1 − e−α0(M+θ−
1 )

= α0(1 + O(α0))

−Mk(1 + O(α0 + M−k)

= α0

−Mk
(1 + O(α0 + M−k))

P−
M−1,0 = e−α0(M−1) − e−α0(M+θ−

M−1)

1 − e−α0(M+θ−
M−1)

= eα0 − e−α0θ
−
M−1

eα0 M − e−α0θ
−
M−1

= α0(1 + θ−
M−1(1 + O(α0))

−1 + O(α0 + M−k)

= −α0(1 + θ−
M−1)(1 + O(α0 + M−k))

For the corresponding expected first hitting time, we have

τ−
1 = 1 − β

β

((
M + φ−

1

)
P−

1,M − 1
)

= 1 − β

β
(−1 + o(1))

= − 2

α0
(1 + o(1)) (44)

and

τ−
M−1 = 1 − β

β

((
M + φ−

M−1

)
P−

M−1,M − (M − 1)
)

= 1 − β

β

[(
M + φ+

M−1

)
(1 − M−k2α0(1 + o(1))

−(M − 1)]

= 1 − β

β
(φ−

M−1 + 1)α0(1 + o(1))

= 2(M + φ−
M−1)(1 + o(1)) (45)

We note that

S−
M−1,M = τ−

M−1 + P−
M−1,0 · S−

0,M (46)

S−
0,M ≥

M∑
x=0

q0,x

(
τx + P−

x,0S−
0,M

)
(47)

where q0,x is the probability that given the random process
{Eβ(n)}∞n=0 first hits boundary 0, it re-enters the range [0, M]
with state x . Thus,

S−
0,M ≥

∑M
x=0 q0,xτx

1 −∑M
x=0 q0,x P−

x,0

=
∑M

x=0 q0,xτx∑M
x=0 q0,x P−

x,M

(48)

According to (33), when α0x is sufficiently small, we have

P−
x,M = 1 − e−α0x

1 − e−α0(M+θx )
= xα0

−Mk
(1 + O(α0 + M−k)) (49)

Pick the smallest positive integer K such that 1
K ! < 1

Mk+2 .
Hence K = O(log M) and α0 K = o(1). For sufficiently large
M , P−

x,M ≤ P−
K ,M . Thus, we have

M∑
x=0

q0,x P−
x,M ≤

K∑
x=0

q0,x P−
x,M +

M∑
x=K+1

q0,x

≤
(

K∑
x=0

q0,x

)
P−

K ,M +
M∑

x=K+1

q0,x

= (1 − q)P−
K ,M + q

where q := ∑M
x=K+1 q0,x . By induction, we can show that q =

O
(

1
(K−1)!

)
. Therefore,

S−
0,M ≥ q0,1τ

−
1

P−
K ,M (1 + O(α0 + M−k))

(50)

Plugging (50) in (46), we have

S−
M−1,M ≥ τ−

M−1 + P−
M−1,0q0,1τ

−
1

P−
K ,M (1 + O(α0 + M−k))

(51)

≥ 2M + Mk

K
q0,1

2M

k log M
(1 + O(α0 + M−k)) (52)

∼ �

(
Mk+1

k(log M)2

)
(53)

Since S−
M−1,M > (1 + S−

M−1,M )P
[

A
(

1
1−β

)
= 0

]
, we have

S−
M,M = �

(
Mk+1

k(log M)2

)
.
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Next, let us consider the case when α0 = k log M
M +

o
(

log M
M

)
> 0. In the following, we use superscript + to indi-

cate that α0 involved in the corresponding quantities is positive.
Applying Lemma 4 for x = 1 and x = M − 1, we have

P+
1,M = 1 − e−α0

1 − e−α0(M+θ+
1 )

= α0(1 + O(α0))

1 + O(M−k)

= α0(1 + O(α0 + M−k))

and

P+
M−1,0 = e−α0(M−1) − e−α0(M+θ+

M−1)

1 − e−α0(M+θ+
M−1)

= e−α0 M (eα0 − e−α0θ
+
M−1)

1 − e−α0(M+θ+
M−1)

= M−kα0(1 + θ+
M−1 + O(α0))

1 + O(M−k)

≤ M−k · 2α0(1 + O(α0 + M−k))

where the inequality follows from the fact that θ+
M−1 ≤ 1

1−β
=

1 + O(α0). Thus,

P+
1,M

P+
M−1,0

≥ Mk

2
(1 + O(α0 + M−k)) (54)

For the corresponding expected first hitting time, we have

τ+
1 = 1 − β

β

((
M + φ+

1

)
P+

1,M − 1
)

= 1 − β

β

((
M + φ+

1

)
α0(1 + o(1)) − 1

)
= 2

(
M + φ+

1

)
(1 + o(1)) (55)

and

τ+
M−1 = 1 − β

β

((
M + φ+

M−1

)
P+

M−1,M − (M − 1)
)

= 1 − β

β

((
M + φ+

M−1

)
(1 − M−k2α0(1 + o(1))

−(M − 1)) (56)

= 1 − β

β
(φ+

M−1 + 1)(1 + o(1))

= 2(1 + φ+
M−1)

α0
(1 + o(1)) (57)

Following similar arguments as in (46)-(50), we have

S+
1,0 ≥ τ+

1 + P+
1,M

P+
M−1,0

· τ+
M−1

≥ 2M + Mk

2
(1 + O(α0 + M−k)) · 2M

k log M
(58)

∼ Mk+1

k log M
(59)

where (58) follows from (54), (55) and (57). �

D. Proof of Theorem 3

Now consider the energy state evolution process {E(s−
n )}∞n=1

under the proposed adaptive sensing scheduling policy. We
focus on the portion of the random process lying in ranges
[0, B/2) and (B/2, B], respectively. Comparing the random
process {E(s−

n )}∞n=1 with the virtual battery evolution process
defined in (27)-(28), we note that each portion can be treated as
part of {Eβ(n)}∞n=0 lying in the corresponding range. Therefore,
the characterization of {Eβ(n)}∞n=0 in Lemma 4 and Lemma 5
can be slightly modified to characterize {E(s−

n )}∞n=1.
Specifically, for the portion lying in [0, B/2), we let M =

B/2, β = k log B
B > 0, then, the expected number of epochs

between two consecutive battery outage events, i.e., E(s−
n ) =

0, can be bounded below by S+
0,0. Thus, based on law of

large numbers, the probability that a sensing epoch is infea-
sible is bounded above by 1/S+

0,0. Therefore, it scales in

O
(

2k+1k(log B)2

Bk+1

)
.

Similarly, for the portion lying in [B/2, B), we map B →
M , B/2 → 0, β = − k log B

B < 0, then, the expected number of
epochs between two consecutive battery overflow events, i.e.,
E(s−

n ) = B, can be bounded below by S−
M,M . Again, based

on law of large numbers, the rate of battery overflow scales

in O
(

2k+1k(log B)2

Bk+1

)
. Due to the properties of Poisson process,

we can show that the amount of wasted energy per unit time is
bounded by twice of the battery overflow rate, thus it scales in
the same order.

E. Proof of Theorem 4

Consider the first n scheduled sensing epochs under the pro-
posed adaptive sensing scheduling policy. Let n+ denote the
number of intervals between two scheduled sensing epochs
with duration 1

1−β
, n− be that with duration 1

1+β
, and n0 be

that with duration 1. Let n̄ be the number of sensing epochs
the battery overflows, and n be the number of infeasible sens-
ing epochs. Then, the n-th scheduled sensing epoch happens
at time Tn := n+

1−β
+ n0 + n−

1+β
. Let A+

n be the total amount of
energy wasted. Then,

E(S−
n ) = (A(Tn) − A+

n ) − (n − n) (60)

where A(Tn) is a Poisson random variable with parameter Tn .
Dividing both sides by n and taking the limit as n goes to +∞,
we have

lim
n→∞

E(n)

n
= lim

n→∞
A(Tn)

Tn
· Tn

n
− lim

n→∞
A+

n

n
−
(

1 − lim
n→∞

n

n

)
Therefore,

lim
n→∞

Tn

n
= 1 + O

(
2k+1k(log B)2

Bk+1

)
(61)

Based on Taylor expansion and (61), we have

lim
n→∞

n+ f
(

1
1−β

)
+ n0 f (1) + n− f

(
1

1+β

)
Tn

= f (1) + O

(
2k+1k(log B)2

Bk+1
+
(

log B

B

)2
)
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On the other hand, due to the existence of infeasible sensing
epochs, we have

lim
n→∞

∑
n f (dn) −

[
n+ f

(
1

1−β

)
+ n0 f (1) + n− f

(
1

1+β

)]
Tn

≤ lim
n→∞

∑
dn :dn≥ 1

1−β
f (dn)

Tn
(62)

≤ lim
n→∞

∑
dn :dn≥ 1

1−β
Cdn

Tn
(63)

≤ lim
n→∞

2Cn

Tn
= O

(
2k+1k(log B)2

Bk+1

)
(64)

where (62) follows from the fact that the difference between the
actual sensing performance and scheduled sensing performance
is due to the infeasible sensing epochs. (63) follows from the
property of f (d), and (64) follows from Theorem 3 and (61).
Thus,

lim
n→∞

∑
n f (dn)

Tn
= f (1) + O

(
2k+1k(log B)2

Bk+1
+
(

log B

B

)2
)
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