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Abstract—We consider the minimization of the transmission
completion time with a battery limited energy harvesting trans-
mitter in a two-user AWGN broadcast channel. The transmitter
has fixed number of packets for each receiver and energy is
modeled to arrive (be harvested) at the transmitter at random
instants. The battery at the transmitter has a finite storage
capacity, hence energy may overflow without being utilized for
data transmission. We derive the optimal offline transmission
policy that minimizes the time by which all of the data packets
are delivered to their respective destinations. We analyze the
structural properties of the optimal transmission policy using a
dual problem. We find the optimal total transmit power sequence
by a directional water-filling algorithm. We prove that there exists
a cut-off power level such that if the allocated power is lower than
this level, then only the stronger user is served in that epoch;
otherwise, the power above this level is allocated to the weaker
user. Based on these properties, we propose an algorithm that
gives the globally optimal offline policy. The proposed algorithm
uses directional water-filling repetitively.

I. INTRODUCTION

Energy harvesting communication systems have been

widely used in many wireless networking applications as they

bring improved lifetime and ease of deployment. A distinctive

characteristic of these systems is that energy becomes available

for use in communication during the course of transmission

of data. This requires the adaptation of the transmission

policies to the energy arrivals. In this paper, we consider

data transmission with an energy harvesting transmitter in a

broadcast setting. We build upon our previous work [1] and

derive the optimal offline policy that achieves the minimum

transmission completion time when the transmitter has a finite

capacity battery.

As shown in Fig. 1, we consider a broadcast channel with an

energy harvesting transmitter and two receivers. Three queues

at the transmitter are: two data queues that store the data

destined to the two receivers and an energy queue (battery)

that stores the harvested energy. The energy queue has a finite

capacity and can store at most Emax units of energy. As shown

in Fig. 2, the energy arrives (is harvested) at times sk in the

amounts Ek. E0 is the initial energy available in the battery

at time zero. Saving energy for future use is advantageous,

however, finite battery capacity constrains this capability, and

thus necessitates avoiding energy overflows [2], [3]. We focus

on the optimal offline policy that minimizes the time, T ,
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Fig. 1. Broadcasting (B1, B2) bits with an energy harvesting transmitter
with a finite capacity battery.

required to transmit B1 bits to receiver 1 and B2 bits to

receiver 2. The transmission policy is subject to the causality

of energy arrivals as well as the finite battery constraint.

Data transmission in energy harvesting systems has attracted

recent attention [1]–[6]. Transmission completion time mini-

mization problem in a point-to-point communication channel

is solved in [4], [5] without battery constraints, and later

in [2] with finite battery capacity constraints. In [3], we

extend the analysis to the fading channel through a concise

algorithm called directional water-filling. In [1], we solve the

transmission completion time minimization problem in a two-

user broadcast channel, independently and concurrently with

[6]. Both works assume that the transmitter battery size is

unlimited. This paper extends these works to the case of a

transmitter with a finite capacity battery.

In [1], we show, under the assumption of an infinite sized

battery, that the time sequence of total power increases mono-

tonically as in the single user case in [5]. Moreover, in [1],

we prove that there exists a cut-off power level for the power

shares of the strong and weak users; strong user’s power

share is always greater than or equal to this cut-off level. The

structure of the optimal policy in [1] is contingent upon the

availability of an infinite capacity battery. In particular, when

a large amount of energy is harvested, the development in

[1] assumes that some portion of this harvested energy can

be saved for future use. However, when the battery capacity is

finite, energy may overflow in such cases. Therefore, the added

challenge in the finite capacity battery case is to accommodate
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Fig. 2. Energies arrive at time instants sk in amounts Ek .

every bit of the incoming energy by carefully managing the

transmission power and users’ power shares according to the

times and amounts of energy arrivals.

Interestingly, we find, in the current paper, that as in [1] the

determination of the total transmit power can be separated

from the determination of the shares of receiver 1 and 2

without losing optimality. We reach this result by following

our approach in [1]. We, first, obtain the structural properties

of the optimal policy by means of a dual problem, namely, the

maximization of the weighted sum of bits served for receivers

1 and 2 by a deadline T . In particular, we show that the total

power in each epoch must be the same as the total power in

the single-user channel, which can be found by a directional

water-filling algorithm in [3]. Then, we find the optimal policy

in our broadcast scenario by an iterative algorithm that makes

repetitive use of directional water-filling.

II. SYSTEM MODEL AND PROBLEM FORMULATION

The system model is as shown in Fig. 1. There are (B1, B2)
bits destined for receivers 1 and 2. E0 is the initial energy

available in the battery at time zero and energy arrivals occur

at times {s1, s2, . . .} in amounts {E1, E2, . . .}. We call the

time interval between two energy arrivals an epoch. The epoch

lengths are ℓi = si − si−1 with the convention s0 = 0. A

standing assumption in the paper is Ei ≤ Emax for all i, as

otherwise the excess energy Ei − Emax cannot be stored in

the battery anyway.

We model the physical layer as an AWGN broadcast chan-

nel, where the received signals at the two receivers are

Y1 = X + Z1 (1)

Y2 = X + Z2 (2)

where X is the transmit signal, and Z1 and Z2 are Gaussian

noises with zero-mean and variances 1 and σ2, respectively,

where σ2 > 1. Therefore, the second user is the degraded

(weaker) user in our broadcast channel. Assuming that the

transmitter transmits with power P , the capacity region for

this two-user AWGN broadcast channel is [7]

r1 ≤
1

2
log2 (1 + αP ) (3)

r2 ≤
1

2
log2

(

1 +
(1 − α)P

αP + σ2

)

(4)

where α is the fraction of power spent for the message

transmitted to the first user. This capacity region is shown

in Fig. 3.

Let us denote f(p) , 1
2 log2 (1 + p) for future use. After

necessary rearrangements, we can show that the rate pairs

R2
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Fig. 3. The capacity region of the two-user AWGN broadcast channel.

(r1, r2) on the boundary of the capacity region satisfy

P = 22(r1+r2) + (σ2 − 1)22r2 − σ2 (5)

, g(r1, r2) (6)

Let us denote the transmit power at time t as P (t) for

t ∈ [0, T ]. Then, the total energy consumed by the transmitter

up to time t can be expressed as
∫ t

0
P (τ)dτ . Note that because

of the finite battery capacity constraint, at any time t, if the

unconsumed energy is greater than Emax, only Emax can be

stored in the battery and the rest of the energy overflows

and hence is wasted. This may happen only at the instants

of energy arrival. Therefore, the total removed energy from

the battery at sk, including the consumed part and the wasted

part, can be expressed recursively as

Er(sk) = max

{

Er(sk−1) +

∫ sk

sk−1

P (τ)dτ,

(

k
∑

j=0

Ej − Emax

)+
}

, k = 1, 2, . . . (7)

where (x)+ = max{0, x}, the upper limit of the integral sk

should be interpreted as sk − ǫ for small ǫ > 0, and Er(s0) =
0. We can extend the definition of Er for the times t 6= sk as:

Er(t) = Er(sh(t)) +

∫ t

sh(t)

P (τ)dτ (8)

where h(t) = max{i : si < t}. An illustration of Er(t)
is shown in Fig. 4. The upper curve in Fig. 4 represents

the total energy arrived and the lower curve is obtained by

subtracting Emax from the upper curve. Er(t) always lies in

between these two curves. In the particular Er(t) shown in

Fig. 4, the energy in the battery exceeds Emax at the time

of third energy arrival at s3 and some energy is removed

from the battery without being utilized for data transmission.

After s3, energy removal from the battery continues due to the

data transmission and hence the removal curve approaches the

total energy arrival curve indicating that the battery energy

is decreasing. In general, battery energy is decreasing in

(si−1, si) for all i.

As the transmitter cannot utilize the energy that has not yet
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Fig. 4. The total removed energy curve Er(t). The jump at s3 represents
an energy overflow because of the finite battery capacity limit.

arrived, the transmission policy is subject to an energy causal-

ity constraint. The removed energy Er(t) cannot exceed the

total energy arrival during the communication. This constraint

is mathematically stated as follows:

Er(t) ≤

h(t)
∑

i=0

Ei, ∀t ∈ [0, T ] (9)

As the energies arrive at discrete times, the causality constraint

reduces to inequalities that has to be satisfied at the times of

energy arrivals:

Er(sk−1) +

∫ sk

sk−1

P (τ)dτ ≤
k−1
∑

i=0

Ei, ∀k (10)

A transmission policy guarantees no-energy-overflow if the

following constraint is satisfied:

h(t)
∑

i=0

Ei −

∫ t

0

P (τ)dτ ≤ Emax, ∀t ∈ [0, T ] (11)

The constraint in (11) imposes that at least
∑k

i=0 Ei −Emax

amount of energy has been consumed by the time the kth

energy arrives so that the battery can accommodate Ek at time

sk. If a policy satisfies (11), the causality constraint in (10)

can be simplified to the following as depicted in Fig. 5:

∫ sk

0

P (τ)dτ ≤

k−1
∑

i=0

Ei, ∀k (12)

In Fig. 5, the total energy curve of the policy does not intersect

the lower curve at the vertically rising parts and thus no energy

is removed from the battery due to energy overflows. Hence,

the causality constraint reduces to the condition that the total

energy curve must lie below the upper curve in Fig. 5.

The transmission policy in a broadcast channel is comprised

of the total power P (t) and the portions of the total transmit

power α(t) and 1 − α(t). However, it can be identically

represented by rates r1(t) and r2(t) via (3)-(4). We call any

rate policy (r1(t), r2(t)) feasible if it satisfies the causality

constraint in (12) where P (t) = g (r1(t), r2(t)) is the power

0 ts1 s2 s3
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Fig. 5. Energy causality constraint and no-energy-overflow constraint are
depicted as cumulative energy curves and the power consumption curve of
a transmission policy that simultaneously satisfies these two constraints by
lying in between these two curves.

necessary to achieve (r1(t), r2(t)) pair.

Instead of directly finding the optimal policy that minimizes

the transmission completion time, we first identify the maxi-

mum departure region of bits delivered to both users by any

fixed time T in the next section.

III. THE DUAL PROBLEM IN THE TWO-USER BROADCAST

CHANNEL

In this section, we consider the dual problem which is

to determine the maximum departure region [1] which gives

the set of number of bits that can be delivered to the two

receivers by a fixed deadline T . Let K denote the number

of energy arrivals in [0, T ) yielding K + 1 epochs and let

us set sK+1 = T . Let (B1, B2) be the total number of bits

sent to receivers 1 and 2, respectively, over the duration [0, T ],

i.e., B1 =
∫ T

0
r1(τ)dτ and B2 =

∫ T

0
r2(τ)dτ . We define the

maximum departure region as follows.

Definition 1 For any fixed transmission duration T , the max-

imum departure region, denoted as D(T ), is the union of

R(B1, B2) = {(b1, b2) : 0 ≤ b1 ≤ B1; 0 ≤ b2 ≤ B2}
where (B1, B2) is the total number of bits sent by some rate

allocation policy that satisfies the energy causality and no-

energy-overflow conditions. That is,

D(T ) =
⋃

(r1(t),r2(t))

R(B1, B2) (13)

where (r1(t), r2(t)) satisfies the causality constraint

∫ t

0

g(r1, r2)(τ)dτ ≤

h(t)
∑

i=0

Ei, ∀t ∈ [0, T ) (14)

and the no-energy-overflow constraint

h(t)
∑

i=0

Ei −

∫ t

0

g(r1, r2)(τ)dτ ≤ Emax, ∀t ∈ [0, T ) (15)

The departure region of any policy that causes energy overflow

can be dominated by a policy that does not allow energy



overflows. Hence, in the definition of D(T ), we restrict the

policies to satisfy the no-energy-overflow condition in (11).

We call any policy that achieves the boundary of D(T ) to

be optimal. The transmission rates remain constant between

energy harvests under any optimal policy (c.f. Lemma 1 in

[1]). Therefore, in the sequel, we restrict ourselves to policies

in which the rates remain constant between any two consec-

utive energy arrivals. We denote the rates that go to users as

(r1i, r2i) over the duration [si−1, si). The causality constraint

in (12) reduces to the following constraint on (r1i, r2i):

k
∑

i=1

g(r1i, r2i)ℓi ≤

k−1
∑

i=0

Ei, k = 1, . . . ,K + 1 (16)

and the no-energy-overflow condition in (11) reduces to:

k
∑

i=0

Ei −
k
∑

i=1

g(r1i, r2i)ℓi ≤ Emax, k = 1, . . . ,K (17)

An important property of D(T ) is stated next.

Lemma 1 D(T ) is a convex region.

Proof: Assume that (B1, B2) and (B′

1, B
′

2) are two points

that can be achieved by some policies {(r1i, r2i)}
K+1
i=1 and

{(r′1i, r
′

2i)}
K+1
i=1 , respectively, that satisfy the energy causality

constraint in (16) and the no-energy-overflow constraint in (17)

such that

(B1, B2) =
(

K+1
∑

i=1

r1iℓi,
K+1
∑

i=1

r2iℓi

)

(18)

(B′

1, B
′

2) =
(

K+1
∑

i=1

r′1iℓi,

K+1
∑

i=1

r′2iℓi

)

(19)

We will show that there exists a policy that achieves (λB1 +
λ̄B′

1, λB2 + λ̄B′

2) where λ̄ = 1 − λ.

By the convexity of g(r1, r2) in (6), we have

g(λr1 + λ̄r′1, λr2 + λ̄r′2) ≤ λg(r1, r2) + λ̄g(r′1, r
′

2) (20)

Hence, transmission of convex combination of (B1, B2) and

(B′

1, B
′

2) requires less energy than the convex combination of

the energies required to transmit them separately. Therefore,

the rate allocation {λr1i + λ̄r′1i, λr2i + λ̄r′2i}
K+1
i=1 may not

satisfy the no-energy-overflow constraints in (17), though, it

achieves (λB1+ λ̄B′

1, λB2+ λ̄B′

2) in the [0, T ] interval. if this

is the case, we can always increase the energy consumption so

that we get a new policy that achieves the desired point while

satisfying the no-energy-overflow and causality constraints.

Let us define the new policy {(r′′1i, r
′′

2i)} as r′′1i ≥ λr1i + λ̄r′1i

and r′′2i ≥ λr2i + λ̄r′2i for all i so that we have

g(r′′1i, r
′′

2i) = λg(r1i, r2i) + λ̄g(r′1i, r
′

2i) (21)

Since g(r1, r2) is strictly monotone and continuous in r1, r2,

one can always find {r′′1i, r
′′

2i}
K+1
i=1 as desired.

Clearly {(r′′1i, r
′′

2i)} satisfies the energy causality and no-

energy-overflow conditions and the resulting operating point

(B̂1, B̂2)

(B′
1, B

′
2)

(B1, B2)

(λB1 + λB′
1, λB2 + λB2)

D(T )

Fig. 6. The maximum departure region D(T ) is a convex region.

(B̂1, B̂2) is such that

B̂1 ≥ λB1 + λB′

1 (22)

B̂2 ≥ λB2 + λB′

2 (23)

Hence, any convex combination of (B1, B2) and (B′

1, B
′

2) can

be achieved by some policy that obeys energy causality and

no-energy-overflow constraints. This proves the convexity of

D(T ). We illustrate the main steps of this proof in Fig. 6.

Since D(T ) is a convex region (in fact, it is strictly convex)

its boundary can be characterized by solving the following

optimization problem for all µ1, µ2 ≥ 0,

max
r1,r2

µ1

K+1
∑

i=1

r1iℓi + µ2

K+1
∑

i=1

r2iℓi

s.t.

k
∑

i=1

g(r1i, r2i)ℓi ≤

k−1
∑

i=0

Ei, 1 ≤ k ≤ K + 1

k
∑

i=0

Ei −
k
∑

i=1

g(r1i, r2i)ℓi ≤ Emax, 1 ≤ k ≤ K (24)

where K is the number of energy arrivals in [0, T ), and K +1
is the number of epochs. Here, r1 and r2 denote the time

sequence of rates r1i and r2i, for i = 1, . . . ,K + 1 that go to

users 1 and 2, respectively.

The problem in (24) is a constrained maximization problem

with a linear objective function. However, the constraint set

is non-convex because of the direction of the inequality in

the no-energy-overflow condition. The underlying reason for

this is that, even if the two policies do not cause energy

overflows themselves, their convex combination may cause

energy overflows. Therefore, in principle, there may exist

multiple extrema for the problem in (24). Next, we argue

that in fact there exists a unique global optimum solution for

this problem. To that end, we extend the set of possible rate

policies to include those that allow energy overflows. Let us

denote the extended set of feasible policies that allow energy

overflows by PR(T ):

PR(T ) ,

{

{(r1i, r2i)}
K+1
i=1 : Er(sk) ≤

k−1
∑

i=0

Ei, ∀k

}

(25)



Then, we have the following result.

Lemma 2 PR(T ) is a convex set.

Proof: Let two policies {(r1i, r2i)}
K+1
i=1 , {(r′1i, r

′

2i)}
K+1
i=1

be in PR(T ) and let their energy removal curves be Er(t),
Er′(t), respectively. By the convexity of g(r1, r2), we have

g(λr1 + λ̄r′1, λr2 + λ̄r′2) ≤ λg(r1, r2) + λ̄g(r′1, r
′

2) (26)

Hence, the energy removal curve of (λr1i + λ̄r′1i, λr2i + λ̄r′2i),
denoted as Er̄(t), satisfies

Er̄(t) ≤ max{Er(t), Er′(t)} ∀t ∈ [0, T ] (27)

≤

h(t)
∑

i=0

Ei, ∀t ∈ [0, T ] (28)

Hence, (λr1i + λ̄r′1i, λr2i + λ̄r′2i) is also in PR(T ).
Extending the constraint set of problem (24) to PR(T )

does not change the optimum value of the objective, because

energy overflows are sub-optimal. As PR(T ) is a convex set

and the objective function is concave, there exists a unique

optimum solution for the extended problem, and this is within

the feasible set of the original problem. Hence, we conclude

that there exists a unique global optimum solution for (24).

We write the Lagrangian for the optimization problem in

(24) as:

L = µ1

K+1
∑

i=1

r1iℓi + µ2

K+1
∑

i=1

r2iℓi

−

K+1
∑

k=1

λk

(

k
∑

i=1

g(r1i, r2i)ℓi −

k−1
∑

i=0

Ei

)

−

K
∑

k=1

ηk

(

k
∑

i=0

Ei −

k
∑

i=1

g(r1i, r2i)ℓi − Emax

)

+

K+1
∑

i=1

γ1ir1i +

K+1
∑

i=1

γ2ir2i (29)

Taking the derivatives of L in (29) with respect to r1i and r2i,

and setting them to zero, we have, for all i

µ1 + γ1i =

(

K+1
∑

k=i

λk −

K
∑

k=i

ηk

)

22(r1i+r2i) (30)

µ2 + γ2i

=

(

K+1
∑

k=i

λk −

K
∑

k=i

ηk

)

(

22(r1i+r2i) + (σ2 − 1)22r2i

)

(31)

Additional complimentary slackness conditions are

γ1kr1k = 0, γ2kr2k = 0 (32)

λk

(

k
∑

i=1

g(r1i, r2i)ℓi −

k−1
∑

i=0

Ei

)

= 0 (33)

ηk

(

k
∑

i=0

Ei −

k
∑

i=1

g(r1i, r2i)ℓi − Emax

)

= 0 (34)

The optimal policy is the solution of (30) and (31) with the

complimentary slackness conditions in (32)-(34). In the next

lemma, we prove a key structural property of the optimal

policy.

Lemma 3 Optimal total transmit power of the transmitter is

independent of the values of µ1, µ2, and, in particular, it is

the same as the single-user optimal transmit power, i.e., for

µ2 = 0.

Proof: From the rate-power relation in (6) and the KKT

optimality conditions in (30) and (31), we have

g(r1i, r2i) =
µ2 + γ2i

(

∑K+1
k=i λk −

∑K
k=i ηk

) − σ2 (35)

≥ 22(r1i+r2i) − 1 (36)

=
µ1 + γ1i

(

∑K+1
k=i λk −

∑K
k=i ηk

) − 1 (37)

≥
µ1

(

∑K+1
k=i λk −

∑K
k=i ηk

) − 1 (38)

Here, (36) becomes an equality when r2i = 0. Therefore, by

(35)-(38), whenever r2i > 0,

Pi =
µ2

(

∑K+1
k=i λk −

∑K
k=i ηk

) − σ2 (39)

>
µ1

(

∑K+1
k=i λk −

∑K
k=i ηk

) − 1 (40)

where Pi = g(r1i, r2i) is the total power in the ith epoch. On

the other hand, if r2i = 0, we have

Pi =
µ1

(

∑K+1
k=i λk −

∑K
k=i ηk

) − 1 (41)

>
µ2

(

∑K+1
k=i λk −

∑K
k=i ηk

) − σ2 (42)

Hence, we have

Pi = max

{

µ1
(

∑K+1
k=i λk −

∑K
k=i ηk

) − 1,

µ2
(

∑K+1
k=i λk −

∑K
k=i ηk

) − σ2

}

(43)

The Lagrange multipliers λi, ηi and γi are uniquely deter-

mined by the complimentary slackness conditions in (32)-(34)

as well as the equality condition,
∑K+1

i=1 Piℓi =
∑K+1

i=1 Ei.

The last equality is needed as otherwise unused energy could

yield higher performance. Therefore, the optimum power allo-

cation is unique. We will next argue that the optimum power

allocation does not depend on µ1, µ2.

We know that Ei ≤ Emax for all i. We will first consider

the case Ei 6= Emax. In this case, if λi > 0 then ηi = 0
and if ηi > 0, λi = 0. This is due to the fact that the

constraints in (16) and (17) cannot be simultaneously satisfied



with equality unless Ei = Emax. Hence, total power Pi is

monotone increasing in each interval [si1 , si2) where Emax

constraint is consecutively satisfied in the i1th and i2th epochs,

i.e., ηi1 , ηi2 > 0 and ηi = 0 for i1 < i < i2. Whenever

an energy causality constraint is satisfied with equality, say

in epoch i, λi > 0; this leads to a strict increase in Pi in

view of (43). Thus, equality of energy causality constraints

leads to an increase while that of Emax constraint leads to a

decrease in the total power. Imposing the energy constraint at

time T as an equality, we get exactly the same power policy as

the optimal power policy in the single user Emax constrained

average throughput maximization problem in [3], i.e, in the

special case of µ2 = 0. Moreover, this characterization is the

same for any µ1, µ2 ≥ 0.

If Ei = Emax for some epoch i, in order to accommodate

the future energy arrivals, the energy arrived should be equal to

the energy consumed in [0, si). This way, the problem can be

separately solved in two intervals [0, si) and [si, T ]. In general,

if Ei = Emax at more than one epoch, we can divide the

problem into that many subproblems and solve them separately

by allowing energy arrived equal the energy consumed in the

corresponding intervals.

Therefore, irrespective of the values of µ1, µ2, the unique

total power allocation can be found by the directional water-

filling algorithm introduced in [3]. The algorithm is based on

a water-energy analogy. Each arriving energy is first allocated

to the corresponding epoch, and if the power level in an epoch

is higher than the one in the next epoch, then some energy is

transferred from the past to the future to equalize the power

levels. However, no energy can be transferred from right to

left (i.e., from the future to the past) due to energy causality.

Direction selectivity of the algorithm is indicated by right

permeable taps. Moreover, Emax constrains the amount of

energy that can be transferred from the past to the future.

If the equalizing water level requires more than Emax − Ei

amount of energy to be transferred to the i + 1st epoch, then

only Emax − Ei can be transferred.

After finding the total power allocation using directional

water-filling, the optimization problem in (24) can be sepa-

rately solved over each duration [si−1, si). Specifically, for a

given sequence of total transmit powers Pi, i = 1, . . . ,K, the

local optimization problem in epoch i becomes

max
r1i,r2i

µ1r1i + µ2r2i

s.t. g(r1i, r2i) ≤ Pi (44)

As in [1], we define a constant power level Pc as

Pc =

(

µ1(σ
2 − 1)

µ2 − µ1
− 1

)+

(45)

This constant value represents the cut-off power level for the

stronger user in the optimal policy.

Lemma 4 A point (B1, B2) on the boundary of D(T ), which

is equally represented by (µ1, µ2), is achieved by the following

policy: If in an epoch the total transmit power level is below

Pc in (45), then, only the stronger user’s data is transmitted;

otherwise, both users’ data are transmitted and the stronger

user’s power share is Pc.

Proof: Since the total power level consumed in epoch i,
Pi, is obtained directly irrespective of the values of µ1 and

µ2, the optimization problem in (44) is performed separately

over each duration [si−1, si). Note that we relax the power

constraint in (44) as an inequality so that it can be stated as

a convex optimization problem. It is clear that we do not lose

optimality by doing so as the objective function is monotone

increasing with respect to total power.

After necessary algebraic steps, one can show as in [1] that

if µ2

µ1
< 1+Pi

σ2+Pi

, then the optimizing values of the variables,

r∗1i and r∗2i are

r∗1i =
1

2
log (1 + Pi) (46)

r∗2i = 0 (47)

If 1+Pi

σ2+Pi

≤ µ2

µ1
≤ σ2, then

r∗1i =
1

2
log

(

µ1(σ
2 − 1)

µ2 − µ1

)

(48)

r∗2i =
1

2
log

(

(µ2 − µ1)(Pi + σ2)

µ2(σ2 − 1)

)

(49)

Finally, if µ2

µ1
> σ2, then

r∗1i = 0 (50)

r∗2i =
1

2
log

(

1 +
Pi

σ2

)

(51)

The statement of the lemma is just a compact expression of

the above optimality conditions in (46)-(51).

Based on Lemmas 3 and 4, for fixed T , we observe that

the optimal policies that achieve the boundary of D(T ) have

a common total power and its splitting between the two users

depends on µ1, µ2. Therefore, for different values of µ2/µ1,

the optimal policy achieves different boundary points on the

maximum departure region. Varying the value of µ2/µ1 traces

the boundary of D(T ).

IV. MINIMUM TRANSMISSION COMPLETION TIME FOR

GIVEN (B1, B2)

In this section, we consider the transmission completion

time minimization problem for a given fixed (B1, B2). The

optimization problem can be formulated as:

min
r1,r2

T

s.t.

k
∑

i=1

g(r1i, r2i)ℓi ≤

k−1
∑

i=1

Ei, 1 ≤ k ≤ K + 1

k
∑

i=0

Ei −
k
∑

i=1

g(r1i, r2i)ℓi ≤ Emax, 1 ≤ k ≤ K

K+1
∑

i=1

r1iℓi = B1,

K+1
∑

i=1

r1iℓi = B2 (52)



where K = K(T ) is the number of energy arrivals over [0, T ),
and lK(T )+1 = T − sK(T ). Since K(T ) depends on T , the

optimization problem in (52) is not convex in general.

We observe that (52) is the “dual” problem of finding the

departure region for fixed T in (24) in the sense that, if the

minimum transmission completion time for (B1, B2) is T ,

then (B1, B2) must lie on the boundary of D(T ). We also note

that in the optimal policy for Emax = ∞ [1], both receivers’

transmissions end at the same time. However, transmissions

do not necessarily end at the same time when there is an

additional Emax constraint. Since the total power level is not

monotonically increasing in the Emax constrained case, the

cut-off power level Pc may be higher than the total power

allocated in the final epoch rendering only the stronger user

transmit in the final epoch.

A. Algorithm to Find the Optimal Policy Given (B1, B2)

(B1, B2) must lie on the boundary of D(Tmin). Hence,

without losing optimality we restrict our attention to the

policies which allocate the total power by directional water-

filling and have the cut-off power structure. As the initial step,

we suppose that the transmitter transmits only to the stronger

user with an arbitrary Pc and find the transmission completion

time for the stronger user

T1 =
B1

f(Pc)
(53)

For this fixed T1, we run the directional water-filling algorithm

and find the total power allocation P1, P2, . . . , PK(T1)+1 with

the deadline T1. The number of bits transmitted to the stronger

user is

D1(T1, Pc) =

K(T1)+1
∑

i=1

1

2
log
(

1 + Pi − [Pi − Pc]
+
)

ℓi (54)

We allocate the remaining power [Pi−Pc]
+ to the weaker user

and calculate the total bits departed from the weaker user’s

queue by deadline T1 as

D2(T1, Pc) =

K(T1)+1
∑

i=1

1

2
log

(

1 +
[Pi − Pc]

+

Pc + σ2

)

ℓi (55)

D2(T1, Pc) is monotonically decreasing with Pc for fixed T1.

In fact, D2(T1, Pc) takes its maximum value at Pc = 0 and

as Pc is increased, the achievable bit departure pairs travel on

the boundary of D(T1) from one extreme to the other.

We divide the bit departure plane into 5 regions as shown

in Fig. 7. The regions are bordered by the constant B1, B2

lines and the D(Tmin) curve. Region 1© is D1 ≤ B1 and

D2 ≤ B2. Regions 2© and 3© combined represent the north-

west part, i.e., D1 ≤ B1 and D2 ≥ B2. The border between

regions 2 and 3 is the D(Tmin) curve. Region 5© is bordered

by the constant B1 line and the D(Tmin) curve. The rest of

the first quadrant is region 4©. We start the problem with the

knowledge of (B1, B2). While we know that (B1, B2) must

lie on the boundary of D(Tmin), we do not know D(Tmin) or

Tmin. We want to find Tmin and the policy that achieves it.

After the initial step, we have D1(T1, Pc) ≤ B1 since Pi <
Pc may occur in some epochs. Hence, the initial operating

point lies in one of regions 1©, 2©, 3©.

If the operating point lies in the interior of region 1©, it

implies that (B1, B2) transmission cannot be completed by

T1. Therefore, we decrease Pc, obtain another T1 according

to (53), and repeat the procedure, until we leave this region.

If by performing the initialization or the previous step, the

operating point hits the B1 line, i.e., D1

(

B1

f(Pc)
, Pc

)

= B1,

while D2

(

B1

f(Pc)
, Pc

)

< B2, as shown in Fig. 7(a), this

implies that Pc < Pi for all epochs i and even if we further

decrease Pc to increase D2, we always have D1

(

B1

f(Pc)
, Pc

)

=

B1. Hence, similar to the algorithm for the unlimited battery

case in [1], we apply bisection only on Pc and approach

D2

(

B1

f(Pc)
, Pc

)

= B2 sufficiently. For the final value of Pc,

Tmin = B1

f(Pc)
.

Then, we consider the scenario when the operating point

enters into region 2© or 3©, i.e., D2

(

B1

f(Pc)
, Pc

)

> B2 while

D1

(

B1

f(Pc)
, Pc

)

≤ B1. For this scenario, we fix T1 and

increase Pc such that D2(T1, Pc) = B2. This brings us to the

horizontal B2 line, as shown in Fig. 7(b). Depending on the

updated D1 under this policy, the operating point lies either

on the left or on the right of the (B1, B2) point.

If we end up at D1(T1, Pc) < B1, it implies T1 < Tmin.

Then, we decrease Pc, and obtain a larger T1 from (53).

Another round of directional water-filing results D2 > B2,

and brings the operating point back into region 2© and 3©.

If we end up at D1(T1, Pc) > B1, it implies T1 > Tmin.

then we fix Pc and decrease T1 only. By doing this, we

decrease D1 and D2 at the same time. This takes the operating

point into region 5© or 1© or it remains in region 4©. Again,

we fix T1, increase Pc, and bring the operating point back

to the horizontal B2 line. This brings us back to one of the

previously considered cases depending on whether D1(T1, Pc)
is greater or smaller than B1.

For all of the above cases, we carefully control the step

size when we do the adjustment of Pc and T1, to make sure

that the operating point gets closer to the (B1, B2) at each

step. Existences of such step sizes are due to continuity of

D1(T1, Pc) and D2(T1, Pc).

V. A NUMERICAL EXAMPLE

We consider a classical band-limited AWGN broadcast

channel with W = 1 MHz and noise power spectral density

N0 = 10−19 W/Hz. The path loss between the transmitter and

the strong user is 100 dB and between the transmitter and the

weak user is 105 dB. We have

r1 = W log2

(

1 +
αPh110−3

N0W

)

(56)

= log2 (1 + αP ) Mbps (57)
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Fig. 7. (a) If the algorithm starts in region 1© and hits D1(T1, Pc) =
B1, then the trajectory does not deviate from the constant B1 line. (b) If
D1(T1, Pc) < B1 and D2(T1, Pc) = B2 is achieved, then a bisection
algorithm converges to the desired (B1, B2) point yielding the minimum T .

and

r2 = W log2

(

1 +
(1 − α)Ph210−3

αP10−3h2 + N0W

)

(58)

= log2

(

1 +
(1 − α)P

αP + 100.5

)

Mbps (59)

We assume Emax = 10 mJ and the energy arrivals occur

at times [2, 5, 8, 9, 12] seconds with amounts [3, 6, 9, 8, 9] mJ.

Initial energy in the battery is E0 = 8 mJ. The number of bits

to be served for the strong and weak users are B1 = 22 Mbits

and B2 = 3 Mbits, respectively.

Our algorithm yields the optimal transmission policy, which

is shown in Fig. 8. Initial energy in the battery and the first

two energy arrivals are spread till t = 8 s. However, only

2 mJ energy can flow from the time interval [8, 9] to [9, 12]
as Emax = 10 mJ constrains the energy flow. This, in turn,

breaks the monotonicity in the total transmit power. In the

optimal policy, Pc = 2.15 mW is found, while in the first

three epochs the transmit power is allocated as 2.125 mW.

Therefore, only the stronger user’s data is transmitted in the

first three epochs. In the remaining epochs, both users’ data

are transmitted simultaneously with transmit power P4 = 7
mW in [8, 9] s, P5 = 3.33 mW in [9, 12] s and P6 = 6.66
mW in [12, 13.5] s.

VI. CONCLUSION

In this paper, we considered the transmission completion

time minimization problem in a two-user broadcast channel

T

2 5 8 9 12 T

2 5 8 9 12

0

0

0 2 5 8 9 12

1

2

4

9

2.125

7

3.3

P

Tmin=13.5

E0 = 8 E1 = 3 E2 = 6 E4 = 8E3 = 9 E5 = 9

Pc=2.15

Fig. 8. (a) Energy arrivals occur at [2, 5, 8, 9, 12] seconds with amounts
[3, 6, 9, 8, 9] mJ with initial energy in the battery at time zero E0 = 8 mJ. (b)
Directional water-filling with right permeable taps. (c) The resulting optimal
transmission policy.

where the transmitter harvests energy from nature and saves

it in a battery of finite storage capacity. We characterized

the structural properties of the optimal policy by means of

the dual problem of maximizing the weighted sum of bits

served for each user by a fixed deadline. We found that

the total power allocation is the same as the single-user

power allocation, which is found by a directional water-filling

algorithm. Moreover, there exists a cut-off power level such

that only the total power above this level is assigned to the

weaker user. This structure enabled us to develop an optimal

offline algorithm which uses single-user directional water-

filling repetitively.
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