Lasers and Optical Electronics

Instructor: Dr. I. C. Khoo, W. E. Leonhard Professor of Electrical Engineering
Room: 216 EE East Tel: 863-2299 Email: ick1@psu.edu
Office hours: Tues & Wed.: 4:00 – 5:00 PM

References [optional]:
“Photonics - Optical Electronics in Modern Communications” by Pochi Yeh & A. Yariv

Grading Policy: 2 mid-term exam.(66 %) and biweekly reports/homework (10%); Final exam. (33%)

Course Contents:
- Reviews of Lasers Principles and Applications
 1. Electromagnetic theory of light/laser [chapter 1]- up to section 1.5
 Basic definitions - intensity, power, energy, refractive index, susceptibility.
 2. Propagation of laser beams [chapter 2] -
 Rays and ray matrix, Gaussian beams descriptions; Fundamental and higher order modes;
 Pulse broadening [modal and chromatic dispersions]
 3. Laser cavity and resonators [chapter 4]- section 4.1, 4.2, 4.7
 Fabry-Perot interferometer, resolution, cavity lifetime, modes.
 ---Mid-term I --
 4. Interaction of laser with atomic medium [chapter 5] - sections 5.1 -5.7
 Spontaneous and induced emissions, gain, amplification and absorption
 Rate equations,
 5. Laser amplification, oscillations, pulsed high power lasers [chapter 6 section 6.1-6.7]
 Oscillation conditions, power and energy considerations, output couplings,
 multimode and singlemode lasers, mode-locking for ultra-short laser pulse, Q-switching for high power laser pulse generation;
 ---Mid-term II --
- Advanced theories of laser interaction with matter; quantum optics and nonlinear optics
 - Quantum theories of light/materials
 - Basic quantum mechanics of atoms, molecules, and semiconductors
 - Electromagnetic theories revisited – photons and harmonic oscillators
 - Time dependent perturbation theory
 - Spontaneous and induced emissions
 - Atomic susceptibilities and refractive index; nonlinear susceptibilities
 - Resonant interaction of laser with materials – Semiclassical theories
 - Density matrix formalism
 - Coherent and incoherent laser-material interaction
 ---Final [mid-term III] --------------------------------------
- Laser laboratory demonstration [1 week]
 Nanosecponds and picosecond pulsed laser [1.06 μm and its harmonics at 0.53 μm];
 Near-infrared [750 nm, 1550 nm] and infrared [10.6 μm] lasers.
 Experimental demonstration of laser generation, mode-locking and q-switching for short intense laser pulse, harmonic generation, gas laser discharge and infrared optics.