1. Consider the two multistage amplifiers shown below.

a. Express V_x, V_y, and V_o in terms of V_s and resistances for the upper amplifier.

b. Express V_x, V_y, and V_o in terms of V_s and resistances for the lower amplifier.
2. Consider the circuit in Figure 1. Sketch each of the following variables as \(v_{in}\) is varied over the domain \([0, 4]\): \(v_{out}\), \(v_{-}\), \(i_{in}\). Include equations and/or annotate your sketches so that slopes of the various line segments in your graphs are obvious.

3. Consider again the circuit in Figure 1. Sketch \(v_{out}(t)\) corresponding to each of the three \(v_{in}(t)\) waveforms shown in Figure 2.

4. Problem 4.24 of the text.

5. Problem 4.30 of the text.
6. Problem 5.1 of the text.
7. Problem 5.9 of the text.
8. Problem 5.14 of the text.
9. Suppose that the op amp in Figure 3 saturates at ±12 V. Sketch the region in the $V_{s1}-V_{s2}$ space where operation of the overall amplifier remains linear.
10. Problem 5.20 of the text.
11. Problem 5.28 of the text.
12. Problem 5.34 of the text.
13. Problem 6.2 of the text. You may sketch the plot of P_L vs R_L rather than using MATLAB or another software package.
14. Problem 6.7 of the text.
15. Problem 6.11 of the text. You may solve the network equations using any method (i.e., you are not required to use MATLAB).

![Figure 3.](image)
Homework 5
EE 210
Section ____

Name_______________________

1.

![Circuit Diagram](image-url)

\[V_x \]

\[V_y \]

\[V_o \]
2. The circuit diagram shows an operational amplifier with input voltage v_{in}, output voltage v_{out}, and feedback resistor $50 \, k\Omega$. The input voltage v_{in} is connected to a $10 \, k\Omega$ resistor. The voltage levels are $+15 \, V$ and $-15 \, V$. The graphs represent the relationship between v_{out} and v_{in}, v_{-} and v_{in}, and i_{in} and v_{in}.
3.

The circuit diagram shows an operational amplifier with input and output terminals labeled. The amplifier has two inputs, v_{in}^+ and v_{in}^-, and one output, v_{out}. The amplifier is connected to a voltage source of +15 V and -15 V. The input terminals are connected to a current source i_{in} through a 10 kΩ resistor. The output v_{out} is connected to a 50 kΩ resistor.

The graphs on the right show the output voltage $v_{out}(t)$ as a function of time t. There are three graphs, each representing different scenarios or conditions for the circuit.
4. Problem 4.24 of text.
5. Problem 4.30 of text.
6. Problem 5.1 of text.

![Linear circuit diagram](image)
7. Problem 5.9 of text.
8. Problem 5.14 of text.
9. \[V_{out} = \frac{V_{s2}}{10 \, \text{k}\Omega + 20 \, \text{k}\Omega} \cdot 20 \, \text{k}\Omega \]
10. Problem 5.20 of text.
11. Problem 5.28 of text.
12. Problem 5.34 of text.
13. Problem 6.2 of text.
14. Problem 6.7 of text.
15. Problem 6.11 of text.